Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Implanted Neurons become Part of the Brain


Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have grafted neurons reprogrammed from skin cells into the brains of mice for the first time with long-term stability.

Six months after implantation, the neurons had become fully functionally integrated into the brain. This successful, because lastingly stable, implantation of neurons raises hope for future therapies that will replace sick neurons with healthy ones in the brains of Parkinson’s disease patients, for example. The Luxembourg researchers published their results in the current issue of ‘Stem Cell Reports’.

Part of a brain slice in which a transplanted induced neural stem cell is fully integrated in the neuronal network of the brain (blue) to develop into a complex and functional neuron.

(c) LCSB 2014

The LCSB research group around Prof. Dr. Jens Schwamborn and Kathrin Hemmer is working continuously to bring cell replacement therapy to maturity as a treatment for neurodegenerative diseases. Sick and dead neurons in the brain can be replaced with new cells.

This could one day cure disorders such as Parkinson’s disease. The path towards successful therapy in humans, however, is long. “Successes in human therapy are still a long way off, but I am sure successful cell replacement therapies will exist in future. Our research results have taken us a step further in this direction,” declares stem cell researcher Prof. Schwamborn, who heads a group of 15 scientists at LCSB.

... more about:
»Brain »LCSB »Parkinson’s »Sick »neurons »replacement »skin

In their latest tests, the research group and colleagues from the Max Planck Institute and the University Hospital Münster and the University of Bielefeld succeeded in creating stable nerve tissue in the brain from neurons that had been reprogrammed from skin cells.

The stem cell researchers’ technique of producing neurons, or more specifically induced neuronal stem cells (iNSC), in a petri dish from the host’s own skin cells considerably improves the compatibility of the implanted cells.

The treated mice showed no adverse side effects even six months after implantation into the hippocampus and cortex regions of the brain. In fact it was quite the opposite – the implanted neurons were fully integrated into the complex network of the brain. The neurons exhibited normal activity and were connected to the original brain cells via newly formed synapses, the contact points between nerve cells.

The tests demonstrate that the scientists are continually gaining a better understanding of how to treat such cells in order to successfully replace damaged or dead tissue. “Building upon the current insights, we will now be looking specifically at the type of neurons that die off in the brain of Parkinson’s patients – namely the dopamine-producing neurons,” Schwamborn reports.

In future, implanted neurons could produce the lacking dopamine directly in the patient’s brain and transport it to the appropriate sites. This could result in an actual cure, as has so far been impossible. The first trials in mice are in progress at the LCSB laboratories on the university campus Belval.

Weitere Informationen: - Link to the scientific paper - link to the Luxembourg Centre for Systems Biomedicine

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: Brain LCSB Parkinson’s Sick neurons replacement skin

More articles from Life Sciences:

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

nachricht Long-term contraception in a single shot
07.10.2015 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>