Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impaired cell division leads to neuronal disorder

31.01.2014
Prof. Erich Nigg and his research group at the Biozentrum of the University of Basel have discovered an amino acid signal essential for error-free cell division.

This signal regulates the number of centrosomes in the cell, and its absence results in the development of pathologically altered cells. Remarkably, such altered cells are found in people with a neurodevelopmental disorder, called autosomal recessive primary microcephaly. The results of these investigations have been published in the current issue of the US journal Current Biology.


Normal separation of chromosomes (blue) with two centrosomes (red) in a bipolar spindel apparatus (green).

Biozentrum, Universität Basel


Flawed separation of chromosomes (blue) with several centrosomes (red) in a multipolar spindel apparatus (green).

Biozentrum, Universität Basel

Cell division is the basis of all life. Of central importance is the error-free segregation of genetic material, the chromosomes. A flawless division process is a prerequisite for the development of healthy, new cells, whilst errors in cell division can cause illnesses such as cancer. The centrosome, a tiny cell organelle, plays a decisive role in this process.

Prof. Erich Nigg’s research group at the Biozentrum of the University of Basel has investigated an important step in cell division: the duplication of the centrosome and its role in the correct segregation of the chromosomes into two daughter cells. The protein STIL has an essential function in this process. It ensures that centrosome duplicate before one half of the genetic material is transported into each of the two daughter cells.

KEN-Box important for protein breakdown
During cell division, the protein STIL is degraded. If this does not occur, the protein accumulates in the cell, which then causes an overproduction of centrosomes. As a consequence, mis-segregated chromosomes are incorporated into the daughter cells, which then represent cells with faulty genetic material. The scientists discovered an amino acid signal on the STIL protein, a so-called KEN-Box, and showed that this is critical for the breakdown of the protein: “The Ken-Box is the signal that orders the protein degradation machinery to break down the STIL protein,” explains Christian Arquint, the first author of this publication. In the absence of the KEN-Box, the protein is not degraded.
Absence of the KEN-Box causes microcephaly
In some patients with microcephaly, a neuronal disorder that leads to a reduced number of nerve cells being produced and, therefore, a smaller brain, the KEN-box is lacking from the STIL protein. The scientists were thus able to demonstrate a tantalizing connection between the absence of this particular amino acid signal and an illness. “When during our investigations of cell division and centrosome duplication we came across a connection to the disorder microcephaly, we were particularly pleased, as this helps us to better understand how this disorder develops,“ says Christian Arquint.

In the future, the research group led by Erich Nigg plans to uncover other connections between errors of cell division and the illness microcephaly. They also want to focus on the investigation of other proteins that play important roles in the process of cell division, in particular those involved in centrosome duplication.

Original Citation
Christian Arquint and Erich A. Nigg
STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification

Current Biology, 30 January 2014 | doi: 10.1016/j.cub.2013.12.016

Further Information

• Prof. Dr. Erich Nigg, University of Basel, Biozentrum,
phone: +41 61 267 16 56, Email: erich.nigg@unibas.ch
• Heike Sacher, Communications, Biozentrum, University of Basel,
phone: +41 61 267 14 49, email: heike.sacher@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>