Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunology Research Sheds New Light on Cell Function, Response

18.01.2013
A Kansas State University-led study has uncovered new information that helps scientists better understand the complex workings of cells in the innate immune system. The findings may also lead to new avenues in disease control and prevention.

Philip Hardwidge, associate professor of diagnostic medicine and pathobiology, was the study's principal investigator. He and colleagues looked at the relationship between a bacterial protein and the innate immune system -- a system of defensive cells that responds rapidly to an infection in a nonspecific manner.

Among their findings, the researchers characterized a new protein that affects how cells in the innate immune system function and protect humans against invading bacteria such as E. coli O157:H7. The study, "NleB, a Bacterial Effector with Glycosyltransferase Activity, Targets GAPDH Function to Inhibit NF-kappaB Activation," was published in the most recent issue of the scientific journal Cell Host and Microbe. The National Institutes of Health's National Institute of Allergy and Infectious Diseases funded the study.

Hardwidge conducted the study with lead author Xiaofei Gao, a doctoral student at the University of Kansas Medical Center and now employed as a postdoctoral fellow at the Whitehead Institute; and with Thanh Pham and Leigh Ann Feuerbacher, postdoctoral research fellows in diagnostic medicine and pathobiology at Kansas State University. Colleagues at the University of Kansas Medical Center; the Institute of Infectiology in Muenster, Germany; and the Stowers Institute for Medical Research also contributed to the study.

The research team studied a bacterium that infects mice, named Citrobacter rodentium. The bacterium is similar to E. coli O157:H7, which causes diarrheal illness in humans. Both bacteria use the protein NleB to inhibit the innate immune system from fighting the bacteria.

"NleB is very important to the ability to cause disease," Hardwidge said. "Epidemiological and functional studies on E. coli and C. rodentium have shown that the presence of the NleB protein is associated with the ability of E. coli and C. rodentium to cause severe disease in humans and mice, respectively. But how the NleB protein did this was unknown."

According to Hardwidge, once bacteria such as C. rodentium and E. coli enter the body, the pathogens use a needle-like secretion apparatus to inject bacterial proteins into intestinal cells. Some of these proteins prevent the innate immune system from fighting the bacterium. One of these injected proteins is NleB.

Hardwidge and colleagues observed that the NleB protein binds with a protein in human cells named GAPDH. NleB modifies the GAPDH protein with a specific sugar molecule and prevents it from participating in a complex biochemical pathway that ultimately allows the innate immune system to respond efficiently to pathogens.

"The function of GAPDH in this pathway was less clear before we did these experiments," Hardwidge said. "GAPDH has well-known functions in the metabolism, but we observed that it also participates in how a cell responds to an infecting bacterium. We're very interested in the fact that this metabolic enzyme has apparently evolved also to be an important part of the innate immune system."

Hardwidge said that E. coli and C. rodentium using the NleB protein to target GAPDH and inhibit innate immunity is also an interesting finding, which will be characterized in greater detail in continuing studies.

With a more advanced understanding about how the innate immune system responds biochemically to invading bacteria -- and how those bacteria suppress the response -- scientists may be able to advance research and therapeutic drug development in other diseases, Hardwidge said. For example, cancers, Crohn's disease and Rheumatoid arthritis all are tied to overactive inflammation. In some cases, the same pathway in which GAPDH participates regulates the inflammation.

"The cell is so complicated, it's amazing that it even works at all, especially when you consider that it is three-dimensional and compartmentalized," Hardwidge said. "We have a general understanding about this important pathway that triggers a defensive response. But when you get into the details of how this pathway is regulated, we're still learning and understanding what exactly is going on. Now, low and behold, there is a new protein involved."

Philip Hardwidge | Newswise
Further information:
http://www.k-state.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>