Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immunology Research Sheds New Light on Cell Function, Response

A Kansas State University-led study has uncovered new information that helps scientists better understand the complex workings of cells in the innate immune system. The findings may also lead to new avenues in disease control and prevention.

Philip Hardwidge, associate professor of diagnostic medicine and pathobiology, was the study's principal investigator. He and colleagues looked at the relationship between a bacterial protein and the innate immune system -- a system of defensive cells that responds rapidly to an infection in a nonspecific manner.

Among their findings, the researchers characterized a new protein that affects how cells in the innate immune system function and protect humans against invading bacteria such as E. coli O157:H7. The study, "NleB, a Bacterial Effector with Glycosyltransferase Activity, Targets GAPDH Function to Inhibit NF-kappaB Activation," was published in the most recent issue of the scientific journal Cell Host and Microbe. The National Institutes of Health's National Institute of Allergy and Infectious Diseases funded the study.

Hardwidge conducted the study with lead author Xiaofei Gao, a doctoral student at the University of Kansas Medical Center and now employed as a postdoctoral fellow at the Whitehead Institute; and with Thanh Pham and Leigh Ann Feuerbacher, postdoctoral research fellows in diagnostic medicine and pathobiology at Kansas State University. Colleagues at the University of Kansas Medical Center; the Institute of Infectiology in Muenster, Germany; and the Stowers Institute for Medical Research also contributed to the study.

The research team studied a bacterium that infects mice, named Citrobacter rodentium. The bacterium is similar to E. coli O157:H7, which causes diarrheal illness in humans. Both bacteria use the protein NleB to inhibit the innate immune system from fighting the bacteria.

"NleB is very important to the ability to cause disease," Hardwidge said. "Epidemiological and functional studies on E. coli and C. rodentium have shown that the presence of the NleB protein is associated with the ability of E. coli and C. rodentium to cause severe disease in humans and mice, respectively. But how the NleB protein did this was unknown."

According to Hardwidge, once bacteria such as C. rodentium and E. coli enter the body, the pathogens use a needle-like secretion apparatus to inject bacterial proteins into intestinal cells. Some of these proteins prevent the innate immune system from fighting the bacterium. One of these injected proteins is NleB.

Hardwidge and colleagues observed that the NleB protein binds with a protein in human cells named GAPDH. NleB modifies the GAPDH protein with a specific sugar molecule and prevents it from participating in a complex biochemical pathway that ultimately allows the innate immune system to respond efficiently to pathogens.

"The function of GAPDH in this pathway was less clear before we did these experiments," Hardwidge said. "GAPDH has well-known functions in the metabolism, but we observed that it also participates in how a cell responds to an infecting bacterium. We're very interested in the fact that this metabolic enzyme has apparently evolved also to be an important part of the innate immune system."

Hardwidge said that E. coli and C. rodentium using the NleB protein to target GAPDH and inhibit innate immunity is also an interesting finding, which will be characterized in greater detail in continuing studies.

With a more advanced understanding about how the innate immune system responds biochemically to invading bacteria -- and how those bacteria suppress the response -- scientists may be able to advance research and therapeutic drug development in other diseases, Hardwidge said. For example, cancers, Crohn's disease and Rheumatoid arthritis all are tied to overactive inflammation. In some cases, the same pathway in which GAPDH participates regulates the inflammation.

"The cell is so complicated, it's amazing that it even works at all, especially when you consider that it is three-dimensional and compartmentalized," Hardwidge said. "We have a general understanding about this important pathway that triggers a defensive response. But when you get into the details of how this pathway is regulated, we're still learning and understanding what exactly is going on. Now, low and behold, there is a new protein involved."

Philip Hardwidge | Newswise
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>