Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunologists of Mainz University present improved mass spectrometric method for proteomic analyses

17.03.2014

Breakthrough discovery offers new perspectives for research on the immune and nervous system / Publication in Nature Methods

When it comes to analyzing cell components or body fluids or developing new medications, there is no way around mass spectrometry. Mass spectrometry is a highly sensitive method of measurement that has been used for many years for the analysis of chemical and biological materials.

Scientists at the Institute of Immunology of the University Medical Center of Johannes Gutenberg University Mainz (JGU) have now significantly improved this analytical method that is widely employed within their field. They have also developed a software program for the integrated analysis of measurement data called ISOQuant.

Their optimized mass spectrometric workflow allows to identify and quantify significantly more proteins than before. The development of this enhanced method of measurement and the specially designed software is described in an article recently published in the prestigious journal Nature Methods.

A proteome represents the entire set of proteins expressed by a cell. Through analysis of proteomes, it is thus possible to obtain a comprehensive picture of the proteins and peptides present in cells or body fluids. However, many of the traditional mass spectrometric methods used to date for proteomic analysis are relatively slow and do not always provide reproducible results.

Dr. Stefan Tenzer of the Institute of Immunology and his colleagues have perfected a relatively new, data-independent technique that facilitates a very accurate and reproducible quantitative analysis. With its help, many more proteins can be identified than before. "Figuratively speaking, the equipment we use is as exact as a scale that can tell whether a two-euro coin is present in a VW Beetle or not," explains Tenzer.

Tenzer's work group focuses in particular on developing novel techniques for quantitative proteomic analysis with the aid of so-called ion mobility mass spectrometry. This technique allows not only to measure the mass of a molecule but can also to determine its cross section.

This additional analytical dimension renders the technique optimally suited for the comprehensive investigation of highly complex samples. Tenzer and his colleagues have also managed to enhance the technique known as label-free quantification. This eliminates the need for samples to be labeled in the laboratory before being analyzed, an otherwise complex procedure.

"We are now able to directly analyze patient samples and specific immune cells without prior cost-intensive preparation," says Tenzer. The Mainz-based scientists specifically developed their ISOQuant software program for this purpose. This provides for standardized analysis of complex data material and generally simplifies the technique of quantitative mass spectrometric analysis. 

These groundbreaking innovations were developed under the aegis of the technology platforms "Quantitative Proteomic Analysis" of the JGU Research Center Immunology (FZI) and "ProTIC" of the Research Unit Translational Neurosciences (FTN) at the Mainz University Medical Center. They were now published in Nature Methods, one of the most respected international journals. This was already the third article published in the Nature journal group in 2013 by Dr. Stefan Tenzer and his colleagues.

"The years of work within the technology platform have paid off in terms of a quantum leap forward with regard to the improvement of the technique of proteomic analysis mass spectrometry," stated Professor Hansjörg Schild, Director of the Institute of Immunology and Coordinator of the Research Center Immunology (FZI) at the Mainz University Medical Center. "The results obtained by Dr. Stefan Tenzer and his colleagues reflect the quality of achievement of this team. I think we can look forward to new and exciting collaborations in future," said Schild. 

"Mass spectrometry is a technique that has now become indispensable within the field of the neurosciences. In this area, we specifically need highly sensitive analytical techniques and Dr. Tenzer has opened up new perspectives in this regard," emphasized Professor Robert Nitsch, Coordinator of the Research Unit Translational Neurosciences and of the Collaborative Research Center 1080 on "Molecular and Cellular Mechanisms of Neuronal Homeostasis" at the Mainz University Medical Center. "The collaboration between the Research Center Immunology and the Research Unit Translational Neurosciences in the field of mass spectrometry represents an excellent opportunity for us to gain new insights into the way the brain functions," claimed Nitsch.

Publication:
Ute Distler, Jörg Kuharev, Pedro Navarro, Yishai Levin, Hansjörg Schild & Stefan Tenzer, “Drift time-specific collision energies enable deep-coverage data- independent acquisition proteomics“,15 December 2013
doi:10.1038/nmeth.2767
http://www.nature.com/nmeth/journal/vaop/ncurrent/index.html

Contact:
Dr. Stefan Tenzer
Head of the Core Facility for Mass Spectrometry
Institute of Immunology
Mainz University Medical Center
D 55131 Mainz
phone +49 6131 17-6199
fax +49 6131 17-6202
e-mail: tenzer@uni-mainz.de
http://www.uni-mainz.de/FB/Medizin/immunologie/neu/en/mitarbeiter-info/Stefan-Te...

Professor Dr. Hansjörg Schild
Director of the Institute of Immunology and Coordinator of the Research Center Immunology Mainz University Medical Center
D 55131 Mainz
phone +49 6131 39-32401
fax +49 6131 39-35688
e-mail: schild@uni-mainz.de
http://www.uni-mainz.de/FB/Medizin/immunologie/neu/en/mitarbeiter-info/Hansjörg-Schild/54

Weitere Informationen:

http://www.nature.com/nmeth/journal/vaop/ncurrent/index.html - publication

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Scientists from MIPT gain insights into 'forbidden' chemistry
11.02.2016 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

Graphene leans on glass to advance electronics

12.02.2016 | Materials Sciences

Twisting magnets enhance data storage capacity

12.02.2016 | Materials Sciences

A metal that behaves like water

12.02.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>