Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunologists of Mainz University present improved mass spectrometric method for proteomic analyses

17.03.2014

Breakthrough discovery offers new perspectives for research on the immune and nervous system / Publication in Nature Methods

When it comes to analyzing cell components or body fluids or developing new medications, there is no way around mass spectrometry. Mass spectrometry is a highly sensitive method of measurement that has been used for many years for the analysis of chemical and biological materials.

Scientists at the Institute of Immunology of the University Medical Center of Johannes Gutenberg University Mainz (JGU) have now significantly improved this analytical method that is widely employed within their field. They have also developed a software program for the integrated analysis of measurement data called ISOQuant.

Their optimized mass spectrometric workflow allows to identify and quantify significantly more proteins than before. The development of this enhanced method of measurement and the specially designed software is described in an article recently published in the prestigious journal Nature Methods.

A proteome represents the entire set of proteins expressed by a cell. Through analysis of proteomes, it is thus possible to obtain a comprehensive picture of the proteins and peptides present in cells or body fluids. However, many of the traditional mass spectrometric methods used to date for proteomic analysis are relatively slow and do not always provide reproducible results.

Dr. Stefan Tenzer of the Institute of Immunology and his colleagues have perfected a relatively new, data-independent technique that facilitates a very accurate and reproducible quantitative analysis. With its help, many more proteins can be identified than before. "Figuratively speaking, the equipment we use is as exact as a scale that can tell whether a two-euro coin is present in a VW Beetle or not," explains Tenzer.

Tenzer's work group focuses in particular on developing novel techniques for quantitative proteomic analysis with the aid of so-called ion mobility mass spectrometry. This technique allows not only to measure the mass of a molecule but can also to determine its cross section.

This additional analytical dimension renders the technique optimally suited for the comprehensive investigation of highly complex samples. Tenzer and his colleagues have also managed to enhance the technique known as label-free quantification. This eliminates the need for samples to be labeled in the laboratory before being analyzed, an otherwise complex procedure.

"We are now able to directly analyze patient samples and specific immune cells without prior cost-intensive preparation," says Tenzer. The Mainz-based scientists specifically developed their ISOQuant software program for this purpose. This provides for standardized analysis of complex data material and generally simplifies the technique of quantitative mass spectrometric analysis. 

These groundbreaking innovations were developed under the aegis of the technology platforms "Quantitative Proteomic Analysis" of the JGU Research Center Immunology (FZI) and "ProTIC" of the Research Unit Translational Neurosciences (FTN) at the Mainz University Medical Center. They were now published in Nature Methods, one of the most respected international journals. This was already the third article published in the Nature journal group in 2013 by Dr. Stefan Tenzer and his colleagues.

"The years of work within the technology platform have paid off in terms of a quantum leap forward with regard to the improvement of the technique of proteomic analysis mass spectrometry," stated Professor Hansjörg Schild, Director of the Institute of Immunology and Coordinator of the Research Center Immunology (FZI) at the Mainz University Medical Center. "The results obtained by Dr. Stefan Tenzer and his colleagues reflect the quality of achievement of this team. I think we can look forward to new and exciting collaborations in future," said Schild. 

"Mass spectrometry is a technique that has now become indispensable within the field of the neurosciences. In this area, we specifically need highly sensitive analytical techniques and Dr. Tenzer has opened up new perspectives in this regard," emphasized Professor Robert Nitsch, Coordinator of the Research Unit Translational Neurosciences and of the Collaborative Research Center 1080 on "Molecular and Cellular Mechanisms of Neuronal Homeostasis" at the Mainz University Medical Center. "The collaboration between the Research Center Immunology and the Research Unit Translational Neurosciences in the field of mass spectrometry represents an excellent opportunity for us to gain new insights into the way the brain functions," claimed Nitsch.

Publication:
Ute Distler, Jörg Kuharev, Pedro Navarro, Yishai Levin, Hansjörg Schild & Stefan Tenzer, “Drift time-specific collision energies enable deep-coverage data- independent acquisition proteomics“,15 December 2013
doi:10.1038/nmeth.2767
http://www.nature.com/nmeth/journal/vaop/ncurrent/index.html

Contact:
Dr. Stefan Tenzer
Head of the Core Facility for Mass Spectrometry
Institute of Immunology
Mainz University Medical Center
D 55131 Mainz
phone +49 6131 17-6199
fax +49 6131 17-6202
e-mail: tenzer@uni-mainz.de
http://www.uni-mainz.de/FB/Medizin/immunologie/neu/en/mitarbeiter-info/Stefan-Te...

Professor Dr. Hansjörg Schild
Director of the Institute of Immunology and Coordinator of the Research Center Immunology Mainz University Medical Center
D 55131 Mainz
phone +49 6131 39-32401
fax +49 6131 39-35688
e-mail: schild@uni-mainz.de
http://www.uni-mainz.de/FB/Medizin/immunologie/neu/en/mitarbeiter-info/Hansjörg-Schild/54

Weitere Informationen:

http://www.nature.com/nmeth/journal/vaop/ncurrent/index.html - publication

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>