Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunological mechanisms of oncolytic adenoviral therapy

27.01.2012
Cancer is one of the most common causes of death in humans. The conventional cancer therapies include surgery, radiotherapy, chemotherapy, and targeting therapies, which are intended to directly destroy and eliminate tumor cells.

These treatments often fail, resulting in tumor metastasis and recurrence. Therefore, there is a critical need for novel cancer therapies. In recent years, an increasing number of studies have revealed that immune responses play a critical role in conventional cancer therapies. Replication-selective oncolytic viruses are a rapidly expanding therapeutic platform for cancer.

Professor Wang Shengdian and his group from the Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, have studied tumor immunity for several years, with a team focusing on oncolytic adenovirus. In this work, entitled "CD8+ T cell response mediates the therapeutic effects of oncolytic adenovirus in an immunocompetent mouse model", published in Chinese Science Bulletin 2012, Vol. 57(1), this team has demonstrated that the host anti-tumor immune responses, especially the CD8+ T cell responses, play a critical role in the therapeutic effects of oncolytic adenovirus. These studies might shed light on novel cancer therapies.

Researchers have identified several oncolytic viruses such as poliovirus, adenovirus, vesicular stomatitis virus, reovirus, and vaccinia virus, which can selectively infect or replicate in cancer cells, but spare normal cells. Among these, adenovirus has been the most commonly used oncolytic virus in the last decade, because of its efficacy, safety, and ease of manipulation. When administered to tumors, oncolytic adenovirus infects and kills cancer cells as a result of the normal viral life cycle, by replicating in cells and releasing progeny viruses. However, adenoviral infection is immunogenic and can induce strong anti-viral immune responses, which accelerate the clearance of virus and limit the therapeutic effects on cancer. Some studies have shown that suppressing the immune system could enhance the efficacy of oncolytic vectors. On the other hand, recent preclinical and clinical studies have suggested that the immune response plays an important role in mediating the antitumor efficacy. Therefore, the influence of immune responses on oncolytic therapy is complex. Because of the species specificity of adenoviral replication, it was widely assumed that adenoviral replication would not occur in mouse tumors.

Consequently, oncolytic adenoviral vectors have been commonly evaluated in immunodeficient mouse-human tumor xenograft models, which do not accurately reflect what happens in humans treated with oncolytic adenovirus. A team led by Professor Yaohe Wang from the Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, previously screened a panel of mouse tumor cell lines and identified two cell lines—CMT 93 (a murine rectal cancer cell line) and CMT64 (a murine non-small-cell lung cancer cell line) with significant permissibility for adenoviral gene expression, cytopathic effects, and/or replication.

In this work, the team lead by Professor Wang Shengdian evaluated the roles of immune components in oncolytic adenoviral therapy with a murine tumor by subcutaneously inoculating CMT 93 cells into syngeneic C57BL/6 mice. They found that CD8+ T cells, but not CD4+ T cells or natural killer cells, are critical mediators of the antitumor efficacy of oncolytic adenovirus by deletion of the corresponding cell subsets with specific antibodies. Intratumoral injection of adenovirus serotype 5 (Ad5) could induce intensive infiltration of CD8+ T cells into the tumor, and increase tumor-specific interferon-ã production and cytotoxic T lymphocyte activity. The anti-tumor T cell responses induced by Ad5 therapy produced long-term tumor-specific memory immune responses that protected the cured mice well from tumor rechallenge. This anti-tumor immune memory is thought to play a major role in preventing tumor relapse. For larger tumors, Ad5 therapy alone controls tumor growth only transiently. However, Ad5 therapy followed by treatment with agonistic anti-4-1BB (cluster differentiation 137, CD137) antibody, a potent enhancer of the specific CD8+ T cell response, resulted in complete rejection of all transplanted tumors, demonstrating that promotion of T cell responses against tumors could enhance the therapeutic effects of oncolytic adenovirus.

In summary, this study provides insight into the antitumor mechanisms of oncolytic adenovirus, in addition to their direct oncolytic effect. Meanwhile, this study proposes a new and more effective therapeutic regime for cancer treatment using a combination therapy of oncolytic adenovirus and immunotherapy.

See the article: YANG Y J, LI X Z, WANG Y H, WANG S D. CD8+ T cell response mediates the therapeutic effects of oncolytic adenovirus in an immunocompetent mouse model. Chinese Science Bulletin 2012 Vol. 57(1): 48-53.

Wang Shengdian | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>