Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immunological mechanisms of oncolytic adenoviral therapy

Cancer is one of the most common causes of death in humans. The conventional cancer therapies include surgery, radiotherapy, chemotherapy, and targeting therapies, which are intended to directly destroy and eliminate tumor cells.

These treatments often fail, resulting in tumor metastasis and recurrence. Therefore, there is a critical need for novel cancer therapies. In recent years, an increasing number of studies have revealed that immune responses play a critical role in conventional cancer therapies. Replication-selective oncolytic viruses are a rapidly expanding therapeutic platform for cancer.

Professor Wang Shengdian and his group from the Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, have studied tumor immunity for several years, with a team focusing on oncolytic adenovirus. In this work, entitled "CD8+ T cell response mediates the therapeutic effects of oncolytic adenovirus in an immunocompetent mouse model", published in Chinese Science Bulletin 2012, Vol. 57(1), this team has demonstrated that the host anti-tumor immune responses, especially the CD8+ T cell responses, play a critical role in the therapeutic effects of oncolytic adenovirus. These studies might shed light on novel cancer therapies.

Researchers have identified several oncolytic viruses such as poliovirus, adenovirus, vesicular stomatitis virus, reovirus, and vaccinia virus, which can selectively infect or replicate in cancer cells, but spare normal cells. Among these, adenovirus has been the most commonly used oncolytic virus in the last decade, because of its efficacy, safety, and ease of manipulation. When administered to tumors, oncolytic adenovirus infects and kills cancer cells as a result of the normal viral life cycle, by replicating in cells and releasing progeny viruses. However, adenoviral infection is immunogenic and can induce strong anti-viral immune responses, which accelerate the clearance of virus and limit the therapeutic effects on cancer. Some studies have shown that suppressing the immune system could enhance the efficacy of oncolytic vectors. On the other hand, recent preclinical and clinical studies have suggested that the immune response plays an important role in mediating the antitumor efficacy. Therefore, the influence of immune responses on oncolytic therapy is complex. Because of the species specificity of adenoviral replication, it was widely assumed that adenoviral replication would not occur in mouse tumors.

Consequently, oncolytic adenoviral vectors have been commonly evaluated in immunodeficient mouse-human tumor xenograft models, which do not accurately reflect what happens in humans treated with oncolytic adenovirus. A team led by Professor Yaohe Wang from the Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, previously screened a panel of mouse tumor cell lines and identified two cell lines—CMT 93 (a murine rectal cancer cell line) and CMT64 (a murine non-small-cell lung cancer cell line) with significant permissibility for adenoviral gene expression, cytopathic effects, and/or replication.

In this work, the team lead by Professor Wang Shengdian evaluated the roles of immune components in oncolytic adenoviral therapy with a murine tumor by subcutaneously inoculating CMT 93 cells into syngeneic C57BL/6 mice. They found that CD8+ T cells, but not CD4+ T cells or natural killer cells, are critical mediators of the antitumor efficacy of oncolytic adenovirus by deletion of the corresponding cell subsets with specific antibodies. Intratumoral injection of adenovirus serotype 5 (Ad5) could induce intensive infiltration of CD8+ T cells into the tumor, and increase tumor-specific interferon-ã production and cytotoxic T lymphocyte activity. The anti-tumor T cell responses induced by Ad5 therapy produced long-term tumor-specific memory immune responses that protected the cured mice well from tumor rechallenge. This anti-tumor immune memory is thought to play a major role in preventing tumor relapse. For larger tumors, Ad5 therapy alone controls tumor growth only transiently. However, Ad5 therapy followed by treatment with agonistic anti-4-1BB (cluster differentiation 137, CD137) antibody, a potent enhancer of the specific CD8+ T cell response, resulted in complete rejection of all transplanted tumors, demonstrating that promotion of T cell responses against tumors could enhance the therapeutic effects of oncolytic adenovirus.

In summary, this study provides insight into the antitumor mechanisms of oncolytic adenovirus, in addition to their direct oncolytic effect. Meanwhile, this study proposes a new and more effective therapeutic regime for cancer treatment using a combination therapy of oncolytic adenovirus and immunotherapy.

See the article: YANG Y J, LI X Z, WANG Y H, WANG S D. CD8+ T cell response mediates the therapeutic effects of oncolytic adenovirus in an immunocompetent mouse model. Chinese Science Bulletin 2012 Vol. 57(1): 48-53.

Wang Shengdian | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>