Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New immuno-therapy for malignant brain tumors

25.11.2013
Glioblastoma is one of the most ominous brain tumors. Despite aggressive surgery, radiation and chemotherapy the outcome of this disease is almost always fatal.

A UZH research team has now achieved success with a novel form of treatment that involves encouraging the body’s own immune system to recognise and eliminate cancer cells in the brain.

Animal experiments show that it is relatively easy to treat cancer in the early stages. However, it is far more difficult to successfully treat advanced cancer. Treatment of brain tumors is particularly challenging because regulatory T-cells accumulate in brain tumors and suppress an immune attack.

In several steps using a new strategy and a novel drug, Burkhard Becher’s team from the Institute of Experimental Immunology at the University of Zurich has now succeeded in doing exactly this in the case of glioblastoma, one of the most dangerous brain tumors. First step, they stimulated the body’s own immune system in such a way that it recognised and then killed the brain tumor cells even in advanced stages of the disease.

The initial objective of their new study was to break through the tumor’s protective shield. “We wanted to establish whether we can actually elicit an immune response to a tumor growing within the brain”, explains Burkhard Becher. To this end, the team used the immune messenger substance, Interleukin-12. When Interleukin-12 is produced in the tumor, immune cells are stimulated locally in such a manner that the tumor is attacked and rejected. Once this procedure had worked well in the early stages of the tumor, the researchers waited in the next stage until the tumor was very large and the life expectancy of the untreated test animals was less than three weeks. “We only began treatment when it was, in fact, already too late”, says the first author of the study Johannes vom Berg. The success rate was low, Berg adds. “We then injected biopharmaceutical Interleukin-12 into the large brain tumor. This did induce an immune response but only led to tumor rejection in one-quarter of the animals.”

From 25 to 80 percent: combined treatment leads to success

The researchers were successful when they drew on a new development in skin cancer treatment. They combined intra-tumoral Interleukin-12 treatment with the intravenous administration of a novel immunostimulating drug that suppresses the regulatory T-cells. The rejection of the tumor then worked in 80 percent of the test animals. “I have rarely seen such convincing data in preclinical glioma treatment”, says Michael Weller, neurooncologist and Director of the Clinic for Neurology at the University Hospital Zurich. He added, “That’s why this development should be tested as soon as possible in clinical trials.”

In a joint trial, the team then tested the treatment in a further tumor model which mimics the clinical situation of the brain tumor patient even better. And once again they were successful.

The next step: a clinical trial as soon as possible

The findings of the current research work have been published in the Journal of Experimental Medicine. Their promising results do not mean that the treatment can already be as effective in brain tumor patients. This has to be examined in the next phase for which the team now actively seek commercial partners. Burkhard Becher puts it like this, “We are cautiously optimistic but it’s time that we adopted completely new strategies to really get to grips with this fatal tumor”

Literature:
Johannes vom Berg, Melissa Vrohlings, Sergio Haller, Aladin Haimovici, Paulina Kulig, Anna Sledzinska, Michael Weller and Burkhard Becher. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell mediated glioma rejection. The Journal of Experimental Medicine (JEM). November 25, 2013.doi: 10.1084/jem.20130678
Contacts:
Prof. Burkhard Becher, PhD
Institute of Experimental Immunology
University of Zurich
Phone: +41 44 635 3703/1
E-mail: becher@immunology.uzh.ch
Weitere Informationen:
http://www.mediadesk.uzh.ch/articles/2013/immuntherapie-gegen-gehirntumor.html
– News release from the University of Zurich in German
http://www.mediadesk.uzh.ch/articles/2013/immuntherapie-gegen-gehirntumor_en.html

– News release from the University of Zurich in English

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>