Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunization for MRSA on the horizon

15.02.2012
New hope for total joint replacement patients
Methicillin resistant staph aureus (MRSA) infections are resistant to antibiotics and can cause a myriad of problems -- bone erosion, or osteomyelitis, which shorten the effective life of an implant and greatly hinder replacement of that implant. MRSA can result in prolonged disability, amputation and even death.

Although only 2 percent of the American population that undergo total joint replacement surgery will suffer an infection, half of those infections are from MRSA. The results of a MRSA infection after a total joint replacement can be devastating. Currently, there is no effective treatment for MRSA-infected implants. With the increasing incidence of total joint replacement surgeries, the prevalence of MRSA-infected implants is expected to rise.

A team of investigators from the University of Rochester Medical Center has developed a vaccine that can prevent bacterial infection of orthopaedic implants. Their findings were presented at the Orthopaedic Research Society (ORS) 2012 Annual Meeting in San Francisco, California.

The team, led by Edward Schwarz, PhD, Professor of Orthopaedics and Associate Director of the Center for Musculoskeletal Research, has generated an antibody that prevents MRSA bacteria from dividing properly.

"What makes the staph such a challenging pathogen is that is has an ironclad cell wall. But that is also its Achilles' heel," Dr. Schwarz said. He explained that if the cell wants to divide, it has to "unzip the cell wall" to break into two "daughter cells." Their team produced an antibody that targets a component of the zipper, Gmd—preventing normal bacterial cell division by causing them to form clusters of cells.

The researchers tested the antibody prior to implantation of a MRSA-infected pin to simulate an infected joint replacement. They monitored bacterial growth and found that their antibody protected 50 percent of their sample from infection. Further analysis found that the antibody prevented formation of sequestrum, or a piece of dead bone, which is a hallmark of osteomyelitis. Additionally, immunization led to decreased bacterial presence on the pins themselves.

Based on these findings, this immunization appears to be a promising treatment to prevent the MRSA infection/reinfection of orthopaedic implants.

Dr. Schwarz and his team were recently awarded a five-year multimillion dollar grant from AOTrauma, a not for profit Swiss foundation, for the Clinical Priority Program grant on infection. This grant deals with the diagnosis, treatment, prevention, and education about musculoskeletal infection.

About the Orthopaedic Research Society (ORS):

The Orthopaedic Research Society (ORS) is the pre-eminent organization for the advancement of musculoskeletal research. It seeks to transform the future through global multidisciplinary collaborations—focusing on the complex challenges of orthopaedic treatment. The ORS advances the global orthopaedic research agenda through excellence in research, education, collaboration, communication and advocacy. The ORS Annual Meeting and publication of the Journal of Orthopaedic Research provide vital forums for the musculoskeletal community to communicate the current state of orthopaedic research.

Annie Hayashi | EurekAlert!
Further information:
http://www.ors.org

Further reports about: MRSA MRSA infection MRSA-infected ORS Orthopaedic Orthopaedic Research immunization

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>