Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune Therapy Can Control Fertility in Mammals

04.04.2011
Technique Could Prevent Pregnancy in Pets, Human Use Is Also Envisioned

Researchers at Weill Cornell Medical College have shown that it is possible to immunize mammals to control fertility. They say their technique could possibly be used on other mammals -- including humans -- because fertility hormones and their receptors are species-non-specific and are similar in both females and males. For pets, the technique could be an alternative to castration and adverse effects of hormone administration.

In the Feb. 24 online issue of Genetic Engineering and Biotechnology Journal, the researchers say their newly synthesized novel chimeric genes produce bi-functional recombinant proteins that are antigenic. The antibodies can tamp down production of progesterone in females and testosterone in males. The most immediate use of this technique might be to control fertility in dogs and cats or other mammals in need of population control, says the study's lead investigator, Dr. Brij B. Saxena, the Harold and Percy Uris Professor of Reproductive Biology at Weill Cornell Medical College.

After extensive preclinical testing for the efficacy, safety and reversibility in animals, the immune therapy might be possible in humans as a treatment for androgen excess syndromes as well as an immunological method to control fertility, adds Dr. Saxena.

The new chimeric gene was engineered by Dr. Saxena and his Weill Cornell colleagues, Dr. Meirong Hao and Dr. Premila Rathnam, and then inserted into insect cells to produce recombinant bi-functional protein. Immunity against fertility can be provided by the production of a bi-functional antibody by active or passive immunization using the recombinant protein.

This new gene contains DNA sequences from two natural genes that are integral to fertility in mammals. One portion is the extracellular domain (ECD) of the ligand (hormone) binding region of the human lutropin/human chorionic gonadotropin receptor (ECD-hLH-R), which is present in the ovaries and testes. The other component is the unique C-terminal peptide of the human chorionic gonadotropin â-subunit (hCG â-CTP).

Key to development of this new chimeric gene and recombinant protein is the researchers' finding that the hLH-R and hCG-â-CTP recombinant proteins are antigenic -- meaning that they can produce an immune response in the body, and produce bifunctional antibodies with dual effect. The antibodies are able to block the hormone binding to the receptor and thus suppress the signal to produce ovarian hormones, specifically progesterone. The second component of the antibody specific to hCG â-CTP would neutralize the hCG-like material produced by the fertilized egg prior to or at the time of implantation. This would lead to lack of stimulation to promote progesterone production by the corpus luteum, resulting in the lack of proliferation of endometrial growth that is vital for the implantation of the fertilized egg -- thus preventing pregnancy.

The scientists are now working on methods to upscale the production of recombinant chimeric protein to be tested as antigens in dogs and cats.

The study was funded by Concept-II, New York, NY.

Weill Cornell Medical College
Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.

Andrew Klein | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>