Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune Therapy Can Control Fertility in Mammals

04.04.2011
Technique Could Prevent Pregnancy in Pets, Human Use Is Also Envisioned

Researchers at Weill Cornell Medical College have shown that it is possible to immunize mammals to control fertility. They say their technique could possibly be used on other mammals -- including humans -- because fertility hormones and their receptors are species-non-specific and are similar in both females and males. For pets, the technique could be an alternative to castration and adverse effects of hormone administration.

In the Feb. 24 online issue of Genetic Engineering and Biotechnology Journal, the researchers say their newly synthesized novel chimeric genes produce bi-functional recombinant proteins that are antigenic. The antibodies can tamp down production of progesterone in females and testosterone in males. The most immediate use of this technique might be to control fertility in dogs and cats or other mammals in need of population control, says the study's lead investigator, Dr. Brij B. Saxena, the Harold and Percy Uris Professor of Reproductive Biology at Weill Cornell Medical College.

After extensive preclinical testing for the efficacy, safety and reversibility in animals, the immune therapy might be possible in humans as a treatment for androgen excess syndromes as well as an immunological method to control fertility, adds Dr. Saxena.

The new chimeric gene was engineered by Dr. Saxena and his Weill Cornell colleagues, Dr. Meirong Hao and Dr. Premila Rathnam, and then inserted into insect cells to produce recombinant bi-functional protein. Immunity against fertility can be provided by the production of a bi-functional antibody by active or passive immunization using the recombinant protein.

This new gene contains DNA sequences from two natural genes that are integral to fertility in mammals. One portion is the extracellular domain (ECD) of the ligand (hormone) binding region of the human lutropin/human chorionic gonadotropin receptor (ECD-hLH-R), which is present in the ovaries and testes. The other component is the unique C-terminal peptide of the human chorionic gonadotropin â-subunit (hCG â-CTP).

Key to development of this new chimeric gene and recombinant protein is the researchers' finding that the hLH-R and hCG-â-CTP recombinant proteins are antigenic -- meaning that they can produce an immune response in the body, and produce bifunctional antibodies with dual effect. The antibodies are able to block the hormone binding to the receptor and thus suppress the signal to produce ovarian hormones, specifically progesterone. The second component of the antibody specific to hCG â-CTP would neutralize the hCG-like material produced by the fertilized egg prior to or at the time of implantation. This would lead to lack of stimulation to promote progesterone production by the corpus luteum, resulting in the lack of proliferation of endometrial growth that is vital for the implantation of the fertilized egg -- thus preventing pregnancy.

The scientists are now working on methods to upscale the production of recombinant chimeric protein to be tested as antigens in dogs and cats.

The study was funded by Concept-II, New York, NY.

Weill Cornell Medical College
Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.

Andrew Klein | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>