Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Immune System: How it is Regulated

04.02.2011
Asthma, diabetes, rheumatism: Such diseases can arise when the immune system does not work properly. Researchers from the Universities of Würzburg and Mainz have discovered new findings about the regulation of the immune defense.

A difficult task: The immune system needs to differentiate between the body's own components and foreign agents. It has to fight pathogens and tumor cells, while at the same time refraining from attacking its own organism.

If it mistakenly does target body tissues, this gives rise to so-called autoimmune diseases. These include rheumatism, certain types of diabetes or a skin condition, called psoriasis, to name a few examples.

In order to keep a healthy balance, the immune system needs to control the activity of its numerous components in a very precise way. The regulatory T cells play a major role in this process. The fact that these cells suppress any faulty activation of the immune system has been known for just about ten years. In patients with autoimmune diseases, there is a shortage of these cells while in cancer patients there are often too many of them.

Regulatory T cells: targets for therapies

What do these cells do, how do they control the immune response? Many scientists around the globe would like to find out – this is because the regulatory T cells are interesting targets for new therapies. For instance, there is hope that a better immune response against cancer can be achieved if these cells are temporarily switched off or the symptoms of autoimmune diseases might be alleviated by activating the cells.

Chemical messengers are pumped into "normal" T cells

The characteristics of regulatory T cells are also examined by the study group of Professor Edgar Serfling at the Institute of Pathology of the University of Würzburg. Together with scientists at the University of Mainz, the Würzburg researchers discovered an interesting fact in 2007: Regulatory T cells can communicate with "normal" T cells of the immune system by creating small connecting tunnels between them and pumping the chemical messenger cAMP into the latter.

In response to this, the "normal" T cells stop dividing and halt the production of pro-inflammatory substances. This slows down the activity of the entire immune defense, which is a quite desirable effect in case of an autoimmune disease.

New findings published in PNAS

How exactly do regulatory T cells switch off normal T cells? This is described by Würzburg and Mainz researchers in a current study published in the scientific journal PNAS. In the normal T cells, the transmitted chemical messenger cAMP causes an increased production of a protein that suppresses a large number of genes. "This also includes the NFATc1 gene and consequently the production of pro-inflammatory interleukins is stopped," explains Professor Serfling.

This newly discovered process represents a very important step in the regulation of the immune system. Next, the scientists are going to clarify further molecular details. Their findings might contribute to the future development of new treatments for autoimmune diseases and cancer.

Results as a product of a Collaborative Research Center

The results were obtained within the joint project of the Collaborative Research Centre (CRC) Transregio 52, titled "Transcriptional Programming of Individual T Cell Subsets". The Würzburg researchers Martin Väth and Josef Bodor were the driving forces behind the publication. They were provided assistance at the Institute of Pathology by Friederike Berberich-Siebelt and Edgar Serfling.

Edgar Serfling is the spokesperson for this CRC initiative, in which the Universities of Würzburg and Mainz cooperate with the Charité Universitätsmedizin Berlin. The German Research Foundation has funded the CRC since July 2008 with a grant of about 12 million euros, allocated over an initial period of four years.

"Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cells c1 (NFATc1)", Martin Väth, Tea Gogishvilib, Tobias Bopp, Matthias Klein, Friederike Berberich-Siebelt, Stefan Gattenlöhner, Andris Avots, Tim Sparwasser, Nadine Grebe, Edgar Schmitt, Thomas Hünig, Edgar Serfling and Josef Bodor. PNAS, published online on 24 January 2011, doi: 10.1073/pnas.1009463108

Contact person:

Prof. Dr. Edgar Serfling, Institute of Pathology at the University of Würzburg, phone +49 931 201-47431, serfling.e@mail.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>