Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Immune System: How it is Regulated

04.02.2011
Asthma, diabetes, rheumatism: Such diseases can arise when the immune system does not work properly. Researchers from the Universities of Würzburg and Mainz have discovered new findings about the regulation of the immune defense.

A difficult task: The immune system needs to differentiate between the body's own components and foreign agents. It has to fight pathogens and tumor cells, while at the same time refraining from attacking its own organism.

If it mistakenly does target body tissues, this gives rise to so-called autoimmune diseases. These include rheumatism, certain types of diabetes or a skin condition, called psoriasis, to name a few examples.

In order to keep a healthy balance, the immune system needs to control the activity of its numerous components in a very precise way. The regulatory T cells play a major role in this process. The fact that these cells suppress any faulty activation of the immune system has been known for just about ten years. In patients with autoimmune diseases, there is a shortage of these cells while in cancer patients there are often too many of them.

Regulatory T cells: targets for therapies

What do these cells do, how do they control the immune response? Many scientists around the globe would like to find out – this is because the regulatory T cells are interesting targets for new therapies. For instance, there is hope that a better immune response against cancer can be achieved if these cells are temporarily switched off or the symptoms of autoimmune diseases might be alleviated by activating the cells.

Chemical messengers are pumped into "normal" T cells

The characteristics of regulatory T cells are also examined by the study group of Professor Edgar Serfling at the Institute of Pathology of the University of Würzburg. Together with scientists at the University of Mainz, the Würzburg researchers discovered an interesting fact in 2007: Regulatory T cells can communicate with "normal" T cells of the immune system by creating small connecting tunnels between them and pumping the chemical messenger cAMP into the latter.

In response to this, the "normal" T cells stop dividing and halt the production of pro-inflammatory substances. This slows down the activity of the entire immune defense, which is a quite desirable effect in case of an autoimmune disease.

New findings published in PNAS

How exactly do regulatory T cells switch off normal T cells? This is described by Würzburg and Mainz researchers in a current study published in the scientific journal PNAS. In the normal T cells, the transmitted chemical messenger cAMP causes an increased production of a protein that suppresses a large number of genes. "This also includes the NFATc1 gene and consequently the production of pro-inflammatory interleukins is stopped," explains Professor Serfling.

This newly discovered process represents a very important step in the regulation of the immune system. Next, the scientists are going to clarify further molecular details. Their findings might contribute to the future development of new treatments for autoimmune diseases and cancer.

Results as a product of a Collaborative Research Center

The results were obtained within the joint project of the Collaborative Research Centre (CRC) Transregio 52, titled "Transcriptional Programming of Individual T Cell Subsets". The Würzburg researchers Martin Väth and Josef Bodor were the driving forces behind the publication. They were provided assistance at the Institute of Pathology by Friederike Berberich-Siebelt and Edgar Serfling.

Edgar Serfling is the spokesperson for this CRC initiative, in which the Universities of Würzburg and Mainz cooperate with the Charité Universitätsmedizin Berlin. The German Research Foundation has funded the CRC since July 2008 with a grant of about 12 million euros, allocated over an initial period of four years.

"Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cells c1 (NFATc1)", Martin Väth, Tea Gogishvilib, Tobias Bopp, Matthias Klein, Friederike Berberich-Siebelt, Stefan Gattenlöhner, Andris Avots, Tim Sparwasser, Nadine Grebe, Edgar Schmitt, Thomas Hünig, Edgar Serfling and Josef Bodor. PNAS, published online on 24 January 2011, doi: 10.1073/pnas.1009463108

Contact person:

Prof. Dr. Edgar Serfling, Institute of Pathology at the University of Würzburg, phone +49 931 201-47431, serfling.e@mail.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>