Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system reactions elucidated by mathematics

22.11.2016

Using computer-based simulations and mouse experiments, HZI researchers disentangled the effects of proinflammatory signaling molecules on the post-influenza susceptibility to pneumococcal coinfection

A body infected by the influenza virus is particularly susceptible to other pathogens. Bacteria like Streptococcus pneumoniae, i.e. the pathogen causing pneumonia, find it easy to attack an influenza-modulated immune system and to spread widely. This can even be fatal in some cases. The reasons for the bacterial growth in the presence of a coinfection by influenza virus and bacteria is still debatable.


Bacteria of the species Streptococcus pneumoniae colonising an endothelial cell.

HZI/M. Rohde

In the scope of an interdisciplinary project, researchers of the Helmholtz Centre for Infection Research (HZI) in Braunschweig and of the Otto von Guericke University Magdeburg (OVGU) just discovered that the overproduction of a certain messenger may facilitate the proliferation of the bacteria in the presence of coinfection. The results of the researchers are published in the journal Scientific Reports.

Up to 20,000 people succumb to the consequences of an influenza disease each year in Germany alone. However, in most cases it is not the influenza virus that leads to serious complications, but a second infection by bacteria acquired by the patient after the onset of influenza. Streptococcus pneumoniae is a bacterium that can cause severe pneumonia and often attacks the body when it is weakened by influenza.

In combination with influenza, this bacterial infection takes a particularly severe course and becomes life-threatening. The processes, by means of which influenza affects the susceptibility to and the severity of bacterial infections, was not well understood thus far.

Using an interdisciplinary approach, the research teams of Dunja Bruder, who is the head of the HZI's research group "Immune Regulation", and a professor of infection immunology at the OVGU Magdeburg, and Dr Esteban A. Hernandez-Vargas, who directs the "Systems Medicine of Infectious Diseases" research group at the HZI, just made a major contribution to solving this riddle.

The researchers jointly developed a project plan linking laboratory work with mice, which were infected concurrently with the influenza virus and Streptococcus pneumoniae, and computer-based modelling of the infection processes. "Usually we simulate biological processes based on previously published data. Since we, as systems biologists at the HZI, work very closely with the infection researchers on-site, we were able to plan the infection experiments appropriately such that the collected data would be ideally suited for the mathematical modelling of the infection processes," says Esteban Hernandez-Vargas.

Dunja Bruder and her team were able to show in infection experiments that the number of macrophages – immune cells that eliminate pathogens – drops rapidly as early as 18 hours after coinfection of influenza-infected mice with the bacteria, and that the bacteria proliferate very rapidly.

When the systems biologists modelled the observed increase of the pneumococci and the simultaneous decrease of the immune cells through mathematical functions, they discovered that the two processes do not match exactly. "This allowed us to deduce that the strong proliferation of the bacteria was not only due to the decrease in the number of macrophages. There had to be at least one more factor that played a role in this process," says Dunja Bruder.

The scientists then took a look at the release of various messenger substances that have important functions in the defence of bacterial infections. As before, exact time points for the collection of samples were defined in the investigation of these molecules to make sure that the collected data would allow for the best-possible mathematical simulation of the ongoing processes. The scientists noted that the amounts of the messenger substances produced by the body in the presence of a coinfection were clearly larger than in the presence of a bacterial infection alone.

Hernandez-Vargas’ team again entered the profiles of the numbers of bacteria, numbers of macrophages and the various messenger substances in his mathematical models. The best model was obtained with the measured interferon gamma data – another messenger substance – and a minor influence was also detected for interleukin 6 – both of which are molecules that are usually important for control of the immune defence in an infection.

"Due to the infection by the influenza viruses, the interferon gamma level is already high. Even more interferon gamma is produced if a second infection by pneumococci occurs. Based on our results, we are presuming that the macrophages can no longer effectively eliminate the bacteria because of this overreaction of the immune system. It is known that their "elimination function" is impaired by excessive levels of interferon gamma," explains Bruder.

This observation is also confirmed by a computer simulation: If one withdraws the interferon gamma from the model, bacterial outgrowth may not be presented. The research team of Dunja Bruder now plans to test the results of this simulation in laboratory experiments. "If the experimental results are consistent with the results obtained by modelling, the mathematical model would give us a tool that allows us to predict the role of certain messenger substances in infection processes," says Hernandez-Vargas. "As one of the benefits, laboratory experiments could be planned much better and the number of animal experiments could be reduced. Moreover, in the long term it might be possible to develop a therapy for coinfections that focuses on the interferon."

Original publication:
S. Duvigneau1, N. Sharma-Chawla1, A. Boianelli, S. Stegemann-Koniszewski, V. K. Nguyen, D. Bruder2, and E. A. Hernandez-Vargas2: Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection. Scientific Reports 6 (2016), doi: 10.1038/srep37045; http://www.nature.com/articles/srep37045
1Joint first authors
2Joint senior authors

The press release and a picture are available on our website: https://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/immune_sy...

The Helmholtz Centre for Infection Research (HZI):
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines. http://www.helmholtz-hzi.de/en

Contact:
Susanne Thiele, Press Officer
susanne.thiele@helmholtz-hzi.de
Dr Andreas Fischer, Editor
andreas.fischer@helmholtz-hzi.de

Helmholtz Centre for Infection Research
Press and Communications
Inhoffenstr. 7
D-38124 Braunschweig
Germany

Phone: +49 531 6181-1404

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>