Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system monitoring improved

23.10.2013
MHC tetramers are important diagnostic reagents that are used by doctors and scientists to follow a patient's immune response against a virus or a tumor.

Their application has so far been limited because they are difficult to make and expensive. An invention by the research group of Sebastian Springer, Professor of Biochemistry and Cell Biology at Jacobs University, now promises to change that.

MHC class I molecules are proteins that bind to peptides from the interior of infected or cancerous cells and transport them to the cell surface. There the virus- or tumor-derived peptides are recognized by cytotoxic T lymphocytes, so-called killer T cells, with the help of their T cell receptors.

The killer T cells can then remove infected or malignant cells by inducing programmed cell death. To find out how many killer T cells exist for each virus or tumor peptide, doctors and scientists use the same MHC class I proteins, bound to that peptide and tied together in clusters of four, to stain T cells from patient blood.

These clusters of four, or 'tetramers', are made in a multi-step process that takes several weeks and is expensive. For every new peptide scientists want to investigate, the production process has to start over, which adds to the cost.

The group of Prof. Sebastian Springer at the Molecular Life Science Center of Jacobs University Bremen, Germany, has now invented a technique that allows the production of tetramers with small molecules, which can later be exchanged for any peptide of interest, which greatly accelerates the production process.

"We currently use dipeptides, that is, very short peptides made up of just two amino acids", explains Prof. Springer. "We found that they fit well into the peptide binding site but that they have a low affinity, which is very handy: when their concentration is decreased, they come out quickly and can then be replaced by a normal peptide that binds with high affinity." The researchers hope that their work will lead to a great increase in the availability of tetramer reagents. Their work is published in the Proceedings of the National Academy of Science of the USA (September 17, 2013).

For questions regarding the study, please contact:
Sebastian Springer | Professor for Biochemistry and Cell Biology
E-Mail: s.springer@jacobs-university.de | Tel.: 0421 200-3243

Judith Ahues | idw
Further information:
http://www.jacobs-university.de

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>