Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system monitoring improved

23.10.2013
MHC tetramers are important diagnostic reagents that are used by doctors and scientists to follow a patient's immune response against a virus or a tumor.

Their application has so far been limited because they are difficult to make and expensive. An invention by the research group of Sebastian Springer, Professor of Biochemistry and Cell Biology at Jacobs University, now promises to change that.

MHC class I molecules are proteins that bind to peptides from the interior of infected or cancerous cells and transport them to the cell surface. There the virus- or tumor-derived peptides are recognized by cytotoxic T lymphocytes, so-called killer T cells, with the help of their T cell receptors.

The killer T cells can then remove infected or malignant cells by inducing programmed cell death. To find out how many killer T cells exist for each virus or tumor peptide, doctors and scientists use the same MHC class I proteins, bound to that peptide and tied together in clusters of four, to stain T cells from patient blood.

These clusters of four, or 'tetramers', are made in a multi-step process that takes several weeks and is expensive. For every new peptide scientists want to investigate, the production process has to start over, which adds to the cost.

The group of Prof. Sebastian Springer at the Molecular Life Science Center of Jacobs University Bremen, Germany, has now invented a technique that allows the production of tetramers with small molecules, which can later be exchanged for any peptide of interest, which greatly accelerates the production process.

"We currently use dipeptides, that is, very short peptides made up of just two amino acids", explains Prof. Springer. "We found that they fit well into the peptide binding site but that they have a low affinity, which is very handy: when their concentration is decreased, they come out quickly and can then be replaced by a normal peptide that binds with high affinity." The researchers hope that their work will lead to a great increase in the availability of tetramer reagents. Their work is published in the Proceedings of the National Academy of Science of the USA (September 17, 2013).

For questions regarding the study, please contact:
Sebastian Springer | Professor for Biochemistry and Cell Biology
E-Mail: s.springer@jacobs-university.de | Tel.: 0421 200-3243

Judith Ahues | idw
Further information:
http://www.jacobs-university.de

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>