Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system molecule with hidden talents

22.01.2013
Fending off pathogens isn't all antibodies do - they also help to convey messages between immune cells

Dendritic cells, or DCs for short, perform a vital role for the immune system: They engulf pathogens, break them down into their component parts, and then display the pieces on their surface.


Dendritic cells, shown here in an electron microscopic picture, need antibodies produced by B cells for their maturation

HZI / Rohde

This in turn signals other immune cells capable of recognizing these pieces to help kick-start their own default program for fighting off the invaders. In order to do their job, the DCs are dependent upon the support from a class of immune system molecules, which have never before been associated with dendritic cells:

Antibodies, best known for their role in vaccinations and diagnostics. Now, scientists at the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH) were able to show that antibodies are essential for dendritic cell maturation. The researchers' findings have been published in the renowned scientific journal, Proceedings of the National Academy of Sciences (PNAS).

The human immune system is made up of some half a dozen different cell types that are all working in tandem. Team work is key since each cell type has a single unique job to perform, which is central to its ability to help defend the body against invaders and ward off disease. If one of these players is taken out of commission, the entire system is thrown out of whack.

This is precisely what Dr. Siegfried Weiss, head of HZI Department of Molecular Immunology, and his team of researchers observed when they looked at immunodeficient mice. "Our 'RAG' mice are lacking adaptive, or acquired immunity," explains Weiss. "Basically, what this means is they are missing their antibody-producing B cells, among others."

The dendritic cells belong to a different branch of the immune system - innate immunity, which, although far less pliable, is capable of a fairly rapid response. Which is why these cells should not be affected by a defect in acquired immunity. Still, the scientists noticed that DCs obtained from this particular murine strain were not working properly - their maturation process was faulty and instead of breaking down a pathogen into small pieces, they ended up destroying the pathogen altogether. "The broken down pieces are called antigens. Presenting antigen is the dendritic cells' main job," explains Dr. Natalia Zietara, one of the scientists who worked on this study. "In fact, it is one of the most important points of intersection between the immune system's innate and acquired branches. If it goes missing, any subsequent immune responses don't ever get triggered," adds her colleague, Dr. Marcin Lyszkiewicz. The cells' normally highly precise interplay comes to a standstill and the acquired immune response becomes largely ineffective at a targeted defense against invading pathogens.
Starting with this observation, the immunologists were interested in identifying the cause behind the defect in the DCs' function. To this end, they initially examined the dendritic cells' surface markers for any potential deviation from the norm - albeit to no avail. Only once they began studying the transcriptome, the sum total of genes that are active in the cells that were being examined, the researchers found what it was they were looking for: The activity of a select few genes, among them those encoding a family of receptors capable of binding antibodies, had been altered. Through a series of subsequent experiments, the researchers were able to show that it was these very molecules, which stimulated dendritic cell maturation.

Antibodies, also called immunoglobulins, are proteins made by B cells. Their normal job is one of neutralizing toxins or viruses and labeling bacteria for destruction by other immune cells. The concept of vaccination is based on artificially prompting the organism to make antibodies, which, at a later stage - specifically, upon contact with the actual pathogen - helps the body ward off disease. Until now, this new role for antibodies was completely unknown. "We had no idea that B cells and dendritic cells use immunoglobulins to communicate with each other. It just goes to show you how complex the immune system really is and how we are a long way from truly grasping the full scope of its complexity," says Dr. Andreas Krueger, head of the Lymphocyte Biology research group at the MHH's Institute of Immunology. In a way, you might say the researchers discovered a 'hidden talent' of antibodies.

Natalia Zietara and Marcin Lyszkiewicz are both named as the study's primary co-authors. They initially kicked off their investigation during the time of their doctoral work in Siegfried Weiss' department at HZI and, upon earning their PhDs, transferred to the MHH where they were able to see the project to its conclusion working in Andreas Krueger's lab. According to Weiss, "this is a prime example of a genuine scientific collaborative." Two other HZI research groups, along with scientists from Freiburg University and the Max Planck Institute of Immunobiology and Epigenetics, were also part of the research project.

Original publication:
Natalia Zietara, Marcin Lyszkiewicz, Jacek Puchalka, Gang Pei, Maximiliano Gabriel Gutierrez, Stefan Lienenklaus, Elias Hobeika, Michael Reth, Vitor A. P. Martins dos Santos, Andreas Krueger, Siegfried Weiss
Immunoglobulins drive terminal maturation of splenic dendritic cells
Proceedings of the National Academy of Sciences, 2013

The focus of HZI's Department of Molecular Immunology is to investigate the role of signaling molecules used by the immune system. One of the primary research goals is to determine how immune cells communicate with each other during an infection and which messenger substances they use for this purpose.

The Helmholtz Centre for Infection Research:
At the Helmholtz Centre for Infection Research (HZI) in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.
http://www.helmholtz-hzi.de

The Lymphocyte Biology research group at the MHH's Cluster of Excellence REBIRTH and Institute of Immunology is working towards a better understanding of the fundamental processes underlying immune system development and using that understanding to develop strategies for returning the immune system to its original state of efficiency following a bone marrow transplant.

The Hannover Medical School (MHH) is one of Germany's most productive universities. Whether research, the provision of medical care, or teaching: through the focused support of individual key aspects, the MHH has claimed its stake among Germany's top university hospitals.

Joint release of HZI and MHH

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.mh-hannover.de
http://www.helmholtz-hzi.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>