Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune system helps transplanted stem cells navigate in central nervous system

UCI study provides blueprint for enhanced treatment of inflammatory diseases like MS

By discovering how adult neural stem cells navigate to injury sites in the central nervous system, UC Irvine researchers have helped solve a puzzle in the creation of stem cell-based treatments: How do these cells know where to go?

Tom Lane and Kevin Carbajal of the Sue & Bill Gross Stem Cell Research Center found the answer with the body’s immune system.

Their study not only identifies an important targeting mechanism in transplanted stem cells but also provides a blueprint for engineering stem cell-based therapies for multiple sclerosis and other chronic neurological diseases in which inflammation occurs. Results appear in this week’s early online edition of the Proceedings of the National Academy of Sciences.

“Previously, we’ve seen that adult neural stem cells injected into the spinal column knew, amazingly, exactly where to go,” said Lane, Chancellor’s Fellow and professor of molecular biology & biochemistry. “We wanted to find what directed them to the right injury spots.”

The researchers used adult neural stem cells to treat mice with a disease similar to MS that destroys myelin, the protective tissue coating on nerves, causing chronic pain and loss of motor function. Adult neural stem cells have shown the ability to change — or differentiate — into oligodendrocytes, the building blocks of myelin, and repair or replace affected tissue.

In the mice, inflammatory cells — reacting to the virally induced nerve damage — were observed activating receptors on the adult neural stem cells. These CXCR-4 receptors, in turn, recruited chemokine proteins called CXCL-12 that guided the stem cells to specific sites. Chemokines are produced in acute and chronic inflammation to help mobilize white blood cells.

As the stem cells migrated through the central nervous system, they began to transform into the precursor cells for oligodendrocytes. Latching onto their repair sites, they continued the differentiation process. Three weeks after the initial treatment, 90 percent of the cells had grown into fully formed oligodendrocytes.

In earlier work, Lane and colleagues demonstrated that adult neural stem cell treatments improved motor function in mice with chronic MS symptoms.

“In this study, we’ve taken an important step by showing the navigational cues in an inflammatory environment like MS that guide stem cells,” said Lane. “Hopefully, these cues can be incorporated into stem cell-based treatments to enhance their ability to repair injury.”

Chris Schaumburg and Joy Kane of UCI and Dr. Robert Strieter of the University of Virginia participated in the study, which received support from the National Institutes of Health and the National Multiple Sclerosis Society.

Lane recently received a Collaborative MS Research Center Award from the National Multiple Sclerosis Society to assemble a team to investigate the use of cell replacement therapy to regenerate MS-ravaged nerve tissue.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>