Researchers at the University of California, San Francisco, demonstrated that the level of macrophages and CD8+ T-cells, two key components of the human immune system, can help predict recurrence and overall survival. New biologic-targeted therapies impairing macrophage recruitment into tumors show promising results in preclinical studies.
"Phase I clinical trials are blunt instruments because their goal is often limited to determining a safe dose for a new drug," said Lisa Coussens, Ph.D., professor in the department of pathology at the University of California, San Francisco. "Using preclinical transgenic mouse models of cancer development, scientists cannot only help determine a safe dose for a new drug, but also identify biomarkers indicative of the biological response of the new drug. Identification of relevant biomarkers can then be translated to clinical studies and help to determine which patients are or are not responding to the drug."
For the current study, Coussens and colleagues tested the effect of PLX3397, a compound currently in a Phase I clinical trial and developed by Plexxikon Inc., which inhibits colony stimulating factor 1 receptor kinase activity, and thereby blocks macrophage recruitment into tumors.
Blocking macrophage recruitment, in combination with paclitaxel, slowed primary tumor development and reduced metastasis in the laboratory animals that were studied. Moreover, these measureable improvements were accompanied by a decreased tumor vessel density and the increased presence of immune cells with anti-tumor properties in the tumors of these mice.
"Understanding more about this tumor microenvironment response can help enhance the effectiveness of chemotherapy," said Coussens.
Coussens and colleagues are working with Plexxikon to further test PLX3397 in other cancers, including mesothelioma, where blocking macrophage recruitment also shows promise.
Press registration for the AACR 102nd Annual Meeting 2011 is free to qualified journalists and public information officers: http://www.aacr.org/PressRegistration
Follow the AACR on Twitter: @aacr #aacr
Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org
Further reports about: > AACR > Cancer > Discovery > Immune cell activation > Molecular Target > cancer research > cancer survivor > immune cell > mouse model
Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo
Full of hot air and proud of it
18.04.2018 | University of Pittsburgh
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.
Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
19.04.2018 | Materials Sciences
Electromagnetic wizardry: Wireless power transfer enhanced by backward signal
19.04.2018 | Physics and Astronomy
Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Physics and Astronomy