Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system assassin's tricks visualised for the first time

01.11.2010
Scientists from the UK and Australia have seen the human immune system's assassin – a protein called perforin – in action for the first time.

The UK team, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust, is based at Birkbeck College where they used powerful electron microscopes to study the mechanism that perforin uses to punch holes in rogue cells. The research is published today (1800hrs, 31 October) in Nature.

Professor Helen Saibil, who leads the UK team at Birkbeck College, said "Perforin is a powerful bullet in the arsenal of our immune system – without it we could not deal with the thousands of rogue cells that turn up in our bodies through our lives."

"Perforin is our body's weapon of cleansing and death," said project leader Professor James Whisstock from Monash University, Melbourne, Australia.

Perforin works by punching holes in cells that have become cancerous or have been invaded by viruses. The holes let toxic enzymes into the cells, which then destroy them.

If perforin isn't working properly the body can't fight infected cells. And there is evidence from mouse studies that defective perforin leads to an upsurge in malignancy, particularly leukaemia, so says Professor Joe Trapani, head of the Cancer Immunology Program at the Peter MacCallum Cancer Centre in Melbourne, Australia.

The first observations that the human immune system could punch holes in target cells was made by the Nobel Laureate Jules Bordet over 110 years ago, but we have had to wait for the latest advances in structural molecular biology to find out how exactly this happens.

Professor Saibil continued "From our previous work we already knew that bacterial toxins, such as the one involved in pneumonia, dramatically change shape to punch holes in membranes. We were fascinated by perforin and wanted to know its structure and how that might change in order for it to act as a hole-punching machine."

The structure was revealed by combining information about a single perforin molecule – visualised using the Australian Synchrotron – with Professor Saibil's electron microscope images, (taken in London), of a ring of perforin molecules clustered together to form a hole in a cell membrane.

Professor Whisstock added "Now we know how it works, we can start to fine tune it to fight cancer, malaria and diabetes."

Another interesting finding is that the important parts of the perforin molecule are quite similar to those toxins deployed by bacteria such as anthrax, listeria and streptococcus, showing that this method of making holes in cell membranes is quite ancient in evolution. "The molecular structure has survived for close to two billion years, we think," said Professor Trapani.

Perforin is also the culprit when the wrong cells are marked for elimination, either in autoimmune disease conditions, such as early onset diabetes, or in tissue rejection following bone marrow transplantation. So the researchers are now investigating ways to boost perforin for more effective cancer protection and therapy for acute diseases such as cerebral malaria. And with the help of a £600K grant from the Wellcome Trust they are working on potential inhibitors to suppress perforin and counter tissue rejection.

Professor Douglas Kell, BBSRC Chief Executive said "New technologies in microscopy and synchrotron experiments have opened up tremendous opportunities for molecular biologists. This is a great example where the knowledge we gain about the normal structure and function of a molecule has the potential to underpin important developments in our health and well being."

Contact

BBSRC External Relations
Nancy Mendoza, Tel: 01793 413355, email: nancy.mendoza@bbsrc.ac.uk
Tracey Jewitt, Tel: 01793 414694, email: tracey.jewitt@bbsrc.ac.uk
Mike Davies, Tel: 01793 442042, email: mike.davies@bbsrc.ac.uk
Matt Goode, Tel: 01793 413299, email: matt.goode@bbsrc.ac.uk
Notes to Editors
The lead authors are Ruby Law from Monash University, Natalya Lukoyanova from Birkbeck College, London, and Ilia Voskoboinik from the Peter MacCallum Cancer Centre and the University of Melbourne. The project leaders are: Joe Trapani (Peter Mac), Helen Saibil (Birkbeck) and James Whisstock (Monash). The research was supported by the above institutions, the NHMRC, the ARC, the UK Biotechnology and Biological Sciences Research Council and the Wellcome Trust.

Feature story/backgrounder and photos available from Niall Byrne at Science in Public, Melbourne, Australia. Tel: +61 417 131 977, email: niall@scienceinpublic.com.au

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £470 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

The Babraham Institute, Institute for Animal Health, Institute of Food Research, John Innes Centre and Rothamsted Research are Institutes of BBSRC. The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>