Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune memory formation seen in early stages of viral infection

29.01.2010
In an acute viral infection, most of the white blood cells known as T cells differentiate into cells that fight the virus and die off in the process. But a few of these "effector" T cells survive and become memory T cells, ensuring that the immune system can respond faster and stronger the next time around.

Scientists have identified a molecule that defines which cells are destined to become memory T cells just a few days after a viral infection begins. The finding could guide the development of more effective vaccines for challenging infections such as HIV/AIDS and also cancer.

The results were published online this week by the journal Immunity. The senior author is Rafi Ahmed, PhD, director of the Emory Vaccine Center, a Georgia Research Alliance Eminent Scholar and a member of the National Academy of Sciences.

Working with Ahmed, postdoctoral fellows Vandalia Kalia and Surojit Sarkar tracked memory T cell formation in mice infected with lymphocytic choriomeningitis virus, a virus that causes an acute infection. They observed that a few days after infection begins, T cells separate into two groups: one with high levels of the molecule CD25 on their surfaces and one with low levels of CD25. Later on, all T cells reduce their levels of CD25 and the differences disappear as the infection is cleared.

"The outstanding question in our field has been: when do T cells commit to becoming memory cells," Kalia says. "This is one of the earliest points where we have been able to see these groups of cells with distinct fates."

CD25 is a molecule on the outside of cells that allows them to respond more sensitively to interleukin 2 (IL2), a growth factor that stimulates T cells. IL2 regulates immune activation. The most commonly used drugs to control the immune systems of transplant patients tamp down production of IL2.

During viral infection, cells with more CD25 respond to IL2 more strongly and produce more battle-ready progeny, but they don't stick around. Cells with low levels of CD25 are five times more able to persist long-term, and they also acquire the ability to travel throughout the body's lymph nodes —key properties of memory T cells compared to effector cells.

"Apparently, cells that receive prolonged IL-2 signals are pushed further down the effector path and hence exhibit decreased potential to form long-lived memory cells," Sarkar says. "It may be beneficial that not all of the T cells burn themselves out fighting the virus so that memory-fated cells can conserve resources for the next encounter."

When mice are given extra IL2, T cells exhibit more pronounced effector characteristics. Sarkar says the results will be instructive for researchers developing vaccines because, combined with previous observations in the field, they show that both too much IL2 and its absence can be detrimental to the development of immunological memory. Because IL-2 is a key regulator of the immune system, some clinical studies have examined whether IL2 can boost immune responses against HIV and cancer, for example.

The differences between the groups of T cells may arise because not all T cells get the same level of stimulation as the infection progresses, Kalia says. "In this situation, a spectrum of effector cells with a range of differentiation states and memory potential likely develops," she says.

Researchers from Loma Linda University, Dana-Farber Cancer Institute and Cornell University also contributed to the paper.

The research was supported by the National Institutes of Health, the Bill and Melinda Gates Foundation and the Elizabeth Glaser Pediatric AIDS Foundation.

Reference:

V. Kalia et al. Prolonged interleukin-2Ra expression on virus-specific CD8+ T cells favors terminal effector differentiation in vivo. Immunity 31, page numbers (2010).

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>