Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune genes adapt to parasites

27.05.2009
Thank parasites for making some of our immune proteins into the inflammatory defenders they are today, according to a population genetics study that will appear in the June 8 issue of the Journal of Experimental Medicine (online May 25).

The study, conducted by a team of researchers in Italy, also suggests that you might blame parasites for sculpting some of those genes into risk factors for intestinal disorders.

Parasite-driven selection leaves a footprint on our DNA in the form of mutations known as "single nucleotide polymorphisms" (SNPs). Making sure that genetic variation (in the form of multiple SNPs) is maintained within certain immune genes over time helps ensure that the host can fend off different infections in different environments.

In the new study, Matteo Fumagalli and colleagues sift through 1,052 SNPs in genes that code for immune proteins called interleukins from roughly 1000 people worldwide. Of 91 genes assessed, 44 bore signatures of evolutionary selection, meaning that the genetic variation was neither due to chance nor to the migration of populations over time. And some of that variation correlated with the diversity of parasites that live alongside humans. The data suggests that having lots of different parasites around has shaped the evolution of our interleukin genes.

In general, parasitic worms appear to have had a more powerful influence on certain interleukin genes than smaller microbes such as viruses, bacteria, and fungi. That isn't surprising, says senior author Manuela Sironi, because worms typically evolve slower than bacteria or viruses, giving their human hosts time to adapt in response. Some of the genes that were shaped by worm diversity made perfect sense, as the proteins they encode help generate the precise type of immune response required to rid the body of worms.

Other genes, however, seemed to be influenced more by the diversity of viruses, bacteria, and fungi than by that of worms. SNPs in some of these genes are known risk alleles for inflammatory bowel diseases, such as Crohn's and celiac disease. These "risky" alleles were probably maintained during evolution because they promote the kind of immune response needed to fend off viruses and bacteria. But this type of response also contributes to inflammatory bowel diseases.

Fumagalli, M., et al. 2009. J. Exp. Med. doi: 10.1084/jem.20082779

Amy Maxmen | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>