Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune genes adapt to parasites

Thank parasites for making some of our immune proteins into the inflammatory defenders they are today, according to a population genetics study that will appear in the June 8 issue of the Journal of Experimental Medicine (online May 25).

The study, conducted by a team of researchers in Italy, also suggests that you might blame parasites for sculpting some of those genes into risk factors for intestinal disorders.

Parasite-driven selection leaves a footprint on our DNA in the form of mutations known as "single nucleotide polymorphisms" (SNPs). Making sure that genetic variation (in the form of multiple SNPs) is maintained within certain immune genes over time helps ensure that the host can fend off different infections in different environments.

In the new study, Matteo Fumagalli and colleagues sift through 1,052 SNPs in genes that code for immune proteins called interleukins from roughly 1000 people worldwide. Of 91 genes assessed, 44 bore signatures of evolutionary selection, meaning that the genetic variation was neither due to chance nor to the migration of populations over time. And some of that variation correlated with the diversity of parasites that live alongside humans. The data suggests that having lots of different parasites around has shaped the evolution of our interleukin genes.

In general, parasitic worms appear to have had a more powerful influence on certain interleukin genes than smaller microbes such as viruses, bacteria, and fungi. That isn't surprising, says senior author Manuela Sironi, because worms typically evolve slower than bacteria or viruses, giving their human hosts time to adapt in response. Some of the genes that were shaped by worm diversity made perfect sense, as the proteins they encode help generate the precise type of immune response required to rid the body of worms.

Other genes, however, seemed to be influenced more by the diversity of viruses, bacteria, and fungi than by that of worms. SNPs in some of these genes are known risk alleles for inflammatory bowel diseases, such as Crohn's and celiac disease. These "risky" alleles were probably maintained during evolution because they promote the kind of immune response needed to fend off viruses and bacteria. But this type of response also contributes to inflammatory bowel diseases.

Fumagalli, M., et al. 2009. J. Exp. Med. doi: 10.1084/jem.20082779

Amy Maxmen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>