Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune exhaustion driven by antigen in chronic viral infection

A main reason why viruses such as HIV or hepatitis C persist despite a vigorous initial immune response is exhaustion. The T cells, or white blood cells, fighting a chronic infection eventually wear out.

Researchers at Emory Vaccine Center have demonstrated that exhaustion is driven by how the immune system detects infecting viruses.

To recognize the presence of a viral infection, T cells must be presented with bits of viral protein in a molecular frame supplied by other cells in the body -- called MHC (major histocompatibility complex) class I molecules.

In mice infected by lymphocytic choriomeningitis virus (LCMV), T cells became more or less exhausted depending on how much properly framed viral protein was available.

Insights from the research could guide efforts to revive the immune system in people with chronic viral infections. The results are published online this week in the Proceedings of the National Academy of Sciences.

Working with Vaccine Center director Rafi Ahmed, PhD, postdoctoral fellow Scott Mueller, PhD, examined the effects of limiting what kind of cells could display the viral antigens.

Ahmed is professor of microbiology and immunology at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar.

By performing bone marrow transplants on genetically engineered mice, Mueller created mice with MHC class I molecules on blood and immune system cells but missing from other cells such as nerve cells and connective tissue. LCMV infects both cells that come from bone marrow and cells that don't. But the roles each type of cell plays in communicating the infection to the immune system is different.

"We were trying to sort out which of several factors contribute to T cell exhaustion, such as viral antigen, inflammation and where the immune system encounters the virus," Mueller says. "What came out of these experiments allowed us to answer a broad question: the role of antigen in driving exhaustion."

When injected with LCMV, the altered mice had more energetic and responsive T cells early during the infection. But later, the altered mice had much higher levels of virus and more exhausted T cells. This contrast demonstrates how the level of antigen present is the motor behind immune exhaustion during the chronic infection.

"Early on, the T cells were healthier because they saw less antigen, and only saw it on cells that came from bone marrow," Mueller says. "But later, the immune system had trouble getting rid of the virus because the T cells couldn't recognize infection in cells that were not able to present the viral antigens."

The research was supported by the National Institutes of Health and the Gates Foundation.

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, Emory University Orthopaedics & Spine Hospital, the jointly owned Emory-Adventist Hospital, and EHCA, a limited liability company created with Hospital Corporation of America. EHCA includes two joint venture hospitals, Emory Eastside Medical Center and Emory Johns Creek Hospital. The Woodruff Health Sciences Center has a $2.3 billion budget, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,300 students and trainees, and a $5.5 billion economic impact on metro Atlanta.

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>