Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune exhaustion driven by antigen in chronic viral infection

A main reason why viruses such as HIV or hepatitis C persist despite a vigorous initial immune response is exhaustion. The T cells, or white blood cells, fighting a chronic infection eventually wear out.

Researchers at Emory Vaccine Center have demonstrated that exhaustion is driven by how the immune system detects infecting viruses.

To recognize the presence of a viral infection, T cells must be presented with bits of viral protein in a molecular frame supplied by other cells in the body -- called MHC (major histocompatibility complex) class I molecules.

In mice infected by lymphocytic choriomeningitis virus (LCMV), T cells became more or less exhausted depending on how much properly framed viral protein was available.

Insights from the research could guide efforts to revive the immune system in people with chronic viral infections. The results are published online this week in the Proceedings of the National Academy of Sciences.

Working with Vaccine Center director Rafi Ahmed, PhD, postdoctoral fellow Scott Mueller, PhD, examined the effects of limiting what kind of cells could display the viral antigens.

Ahmed is professor of microbiology and immunology at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar.

By performing bone marrow transplants on genetically engineered mice, Mueller created mice with MHC class I molecules on blood and immune system cells but missing from other cells such as nerve cells and connective tissue. LCMV infects both cells that come from bone marrow and cells that don't. But the roles each type of cell plays in communicating the infection to the immune system is different.

"We were trying to sort out which of several factors contribute to T cell exhaustion, such as viral antigen, inflammation and where the immune system encounters the virus," Mueller says. "What came out of these experiments allowed us to answer a broad question: the role of antigen in driving exhaustion."

When injected with LCMV, the altered mice had more energetic and responsive T cells early during the infection. But later, the altered mice had much higher levels of virus and more exhausted T cells. This contrast demonstrates how the level of antigen present is the motor behind immune exhaustion during the chronic infection.

"Early on, the T cells were healthier because they saw less antigen, and only saw it on cells that came from bone marrow," Mueller says. "But later, the immune system had trouble getting rid of the virus because the T cells couldn't recognize infection in cells that were not able to present the viral antigens."

The research was supported by the National Institutes of Health and the Gates Foundation.

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, Emory University Orthopaedics & Spine Hospital, the jointly owned Emory-Adventist Hospital, and EHCA, a limited liability company created with Hospital Corporation of America. EHCA includes two joint venture hospitals, Emory Eastside Medical Center and Emory Johns Creek Hospital. The Woodruff Health Sciences Center has a $2.3 billion budget, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,300 students and trainees, and a $5.5 billion economic impact on metro Atlanta.

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>