Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New immune defence enzyme discovered

04.04.2012
A previously unknown serine protease forms part of the antibacterial defence arsenal of neutrophil granulocytes

Neutrophil granulocytes comprise important defences for the immune system. When pathogenic bacteria penetrate the body, they are the first on the scene to mobilise other immune cells via signal molecules, thereby containing the risk.


Microscope image of normal human bone marrow tissue with stained NSP4 in myeloblasts and myelocytes. © MPI of Neurobiology

To this end, they release serine proteases – enzymes that cut up other proteins to activate signal molecules. Scientists at the Max Planck Institute of Neurobiology in Martinsried have now discovered a new serine protease: neutrophil serine protease 4, or NSP4. This enzyme could provide a new target for the treatment of diseases that involve an overactive immune system, such as rheumatoid arthritis.

The functioning of the immune system is based on the complex interplay of the most diverse cells and mediators. For example, neutrophil granulocytes (a group of specialized white blood cells) react to bacteria by releasing substances called serine proteases. These enzymes are able to activate signal molecules, such as the chemokines, by cleaving them at a specific position on the molecule. The active signal molecules then guide other immune cells to the focus of inflammation in order to destroy the pathogens.

A research team led by Dieter Jenne at the Max Planck Institute of Neurobiology in Martinsried has come across a previously unknown protease in humans: neutrophil serine protease 4, or NSP4. "The special thing about this enzyme is that it cuts proteins that have the amino acid arginine at a particular point", says Dieter Jenne, research group leader at the Martinsried-based Institute. "This is where NSP4 differs from the other three known neutrophil serine proteases, which are similar in molecular structure, but have a different recognition motif." The scientists may be able to harness this difference to develop an active substance that specifically inhibits NSP4, thereby reducing the immune reaction.

However, serine protease activity comes at a cost. The enzymes not only heal inflammations, but sometimes cause them in the first place. If too many immune cells are activated, they can use their arsenal of aggressive chemical weapons against the body's own tissues. A number of chronic inflammatory diseases are based on precisely this effect. As a result, scientists are searching for substances that can block the neutrophil proteases. To date, however, none of the substances tested have been developed into effective drugs.

"So far, we don't know the identity of the NSP4 substrate, but we assume they must be signal molecules", says Dieter Jenne. Activated chemokines can recruit a vast number of neutrophils, and their sheer quantity alone is enough to cause tissue damage. "Proteases sometimes act as accelerants and can even trigger a chronic inflammation quite independently of bacterial intruders. If we dampened down the defences, we could counteract this effect", explains the scientist.

In terms of evolutionary history, NSP4 is the oldest of the four known neutrophil serine proteases. Using gene sequences, scientists have shown that the enzyme has hardly changed through hundreds of millions of years of evolution from bony fish to humans. "That would indicate that NSP4 regulates a fundamental process", says Dieter Jenne.

The fact that the enzyme remained undiscovered until now is because it occurs at a much lower concentration than the other three proteases. The Max Planck scientists came across it while searching the human genome for genes that encode serine proteases. In the process, they noticed a previously unknown gene sequence. Natascha C. Perera, a member of the Martinsried research group and lead author of the study, managed to produce and examine the enzyme in its active, folded state.

If they are to establish NSP4 in the future as a possible target protein for anti-inflammatory drugs, the scientists must now examine its function in living organisms and discover whether blocking the enzyme has adverse effects. The scientists are working with the company Novartis to answer these questions in laboratory mice. "NSP4 inhibitors could be used in diseases like chronic arthritis or inflammatory skin diseases", says Dieter Jenne, "but first we have to test the long-term effects of these substances."

Contact

Dr. Dieter Jenne
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 85783588
Fax: +49 89 89950180
Email: djenne@neuro.mpg.de
Original publication
Perera NC, Schilling O, Kittel H, Back W, Kremmer E, Jenne DE (2012)
NSP4, an elastase-related protease in human neutrophils with arginine specificity

PNAS, April 2, 2012 DOI: 10.1073/pnas.1200470109

Dr. Dieter Jenne | EurekAlert!
Further information:
http://www.mpg.de/5589778/immune_defence_enzyme

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>