Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells reveal fancy footwork

26.11.2008
Scientists discover why immune cell loses its feet

Our immune system plays an essential role in protecting us from diseases, but how does it do this exactly? Dutch biologist Suzanne van Helden discovered that before dendritic cells move to the lymph nodes they lose their sticky feet.

This helps them to move much faster. Immature dendritic cells patrol the tissues in search of antigens. After exposure to such antigens they undergo a rigorous maturation process. During this maturation the dendritic cells migrate to the lymph nodes to activate T cells. Suzanne van Helden studied the adhesion and migration of both immature and mature dendritic cells.

Dendritic cell as a general
A dendritic cell can be compared with a pocket-sized general. As an immature cell he is on patrol in the bloodstream and in tissues in search of foreign bodies. The feet, or podosomes, help the cell to move around at a slow pace. As soon as immature dendritic cells detect a problem they must report back quickly to the T cells to warn them of impending danger. The dendritic cells are then hindered by their adhesive feet. This is the reason why at this point the cell undergoes modifications and loses its feet. In this way the mature dendritic cell can wing its way to the T cells at full speed. Once alerted, the T cells can intervene and tackle the problem in the body's infected tissues.

Van Helden not only demonstrated that dendritic cells lose their podosomes very quickly during maturation but she also identified the substances that are responsible for their disappearance. The presence of prostaglandin E2 is indispensable for this disassembly. In addition, it appears that dendritic cells lose their podosomes after interaction with certain bacteria. What is striking is that only gram-negative bacteria lead to podosome loss. Gram-positive bacteria do not have this effect. Van Helden concludes that dendritic cells can apparently distinguish between different pathogens.

Dendritic cells in action
The immune system can act in different ways to keep the body healthy. Unfortunately the working of the immune system is not perfect. In cancer for example, the immune system does not respond to the altered cells that make up the tumour. It is possible that this knowledge about the adhesion and migration of dendritic cells could contribute to future developments in a new approach to cancer treatment.

Van Helden carried out her research within a group of scientists that study the function of dendritic cells in different ways. The research comprises not only fundamental research, as in Van Helden's case, but also preclinical and clinical trials. The research was made possible by a grant from NWO. Spinoza Prize winner Carl Figdor supervised Van Helden during her research.

Kim van den Wijngaard | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7L9J7Z_Eng

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>