Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Immune Cells Destroy Cancer Cells – MDC Researchers Elucidate Mechanism

17.01.2012
Dr. Kathleen Anders and Professor Thomas Blankenstein of the Max Delbrück Center (MDC) Berlin-Buch and researchers of the Beckman Research Institute of the City of Hope Cancer Center in Duarte, California, USA showed that drug-based cancer treatment and adoptive T cell therapy are both highly effective against large tumors.

However, the T cells not only kill cancer cells – they additionally destroy the tumor blood vessel system, thus impeding the supply of nutrients to the tumor. Consequently, “escapee” mutant tumor cells are eradicated that have become resistant to drug-based treatment and are responsible for tumor recurrence. (Cancer Cell, doi10.1016/j.ccr.2011.10.019)*.

The researchers transplanted tumor cells into mice that express SV40 large T antigen (Tag), the oncogene that is critical for tumor growth. The researchers were thus able to target and inactivate the oncogene using the antibiotic drug doxycycline (dox), which has an effect similar to modern drugs currently in clinical use. Since the oncogene is also present as antigen on the surface of the tumor cells, the researchers were also able to target these tumors with oncogene-specific T cells. Thus, for the first time the effect of the two completely different therapy approaches could be compared directly with each other.

Moreover, a special feature of the study was that the tumors in the mice were large – bigger than one centimeter and containing about one billion cancer cells, comparable to clinical-size tumors in patients. Only then, according to the researchers, is the development of the tumor tissue (tumor stroma), which also includes the tumor vasculature, complete. The tumor is then considered “established”. The aim of tumor therapy is to kill all cancer cells to prevent the recurrence of cancer disease.

The researchers showed in mice that the tumor is destroyed by the drug-mediated inactivation of the oncogene, but that the tumor vasculature and thus the blood supply of the tumor remains intact. In addition, due to a high mutation rate, some cancer cells become resistant to the drug and quickly generate new tumors despite continual administration of the anti-cancer drug.

Adoptive T-cell therapy, the researchers noted, is more effective in the mice in the long term, because it destroys the blood supply of the tumor. In addition, it evidently intercepts cancer cells that have altered their characteristics via mutations and thus escape drug treatment. In adoptive T-cell therapy, the researchers modulate the cytotoxic T cells (immune cells toxic for the cell) in the test tube in such a way that the T cells recognize certain features on the surface of cancer cells and specifically destroy the tumor cells. Then these primed immune cells are transferred back into the mice. The researchers point out that techniques to produce highly specialized T cells against human tumors have recently been developed following previous studies by Professor Blankenstein’s research group. Now it will be important to determine exactly how these immune cells can be used in future clinical trials.

The researchers hope that their insights in defining optimal conditions for T cell therapy may help improve future clinical trials and thus the treatment of cancer patients.

*Oncogene-targeting T cells reject large tumors, while oncogene inactivation selects escape variants in mouse models of cancer

Kathleen Anders1, Christian Buschow2, Andreas Herrmann3, Ana Milojkovic4, Christoph Loddenkemper5, Thomas Kammertoens2, Peter Daniel4, Hua Yu3, Jehad Charo1, Thomas Blankenstein1,2,*

1Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
2Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
3Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010 USA
4Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Berlin Buch, 13092, Berlin, Germany

5Institute of Pathology, Charité Campus Benjamin Franklin, 12200, Berlin, Germany

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>