Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells of the blood might replace dysfunctional brain cells

22.10.2012
Press Release from the German Center for Neurodegenerative Diseases and the Hertie Institute for Clinical Brain Research

Blood-circulating immune cells can take over the essential immune surveillance of the brain, this is shown by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the Hertie Institute for Clinical Brain Research in Tübingen. Their study, now published in PNAS, might indicate new ways of dealing with diseases of the nervous system.

The immune system is comprised of multiple cell types each capable of specialized functions to protect the body from invading pathogens and promote tissue repair after injury. One cell type, known as monocytes, circulates throughout the organism in the blood and enters tissues to actively phagocytose (eat!) foreign cells and assist in tissue healing.

While monocytes can freely enter most bodily tissues, the healthy, normal brain is different as it is sequestered from circulating blood by a tight network of cells known as the blood brain barrier. Thus, the brain must maintain a highly specialized, resident immune cell, known as microglia, to remove harmful invaders and respond to tissue damage.

In certain situations, such as during disease, monocytes can enter the brain and also contribute to tissue repair or disease progression. However, the potential for monocytes to actively replace old or injured microglia is under considerable debate. To address this, Nicholas Varvel, Stefan Grathwohl and colleagues from the German Center for Neurodegenerative Diseases (DZNE) Tübingen and the Hertie Institute for Clinical Brain Research in Tübingen used a transgenic mouse model in which almost all brain microglia cells (>95%) can be removed within two weeks. This was done by introducing a so-called suicide gene into microglia cells and administering a pharmaceutical agent that leads to acute death of the cells. Surprisingly, after the ablation of the microglia, the brain was rapidly repopulated by blood-circulating monocytes. The monocytes appeared similar, but not identical to resident microglia. The newly populated monocytes, evenly dispersed throughout the brain, responded to acute neuronal injury and other stimuli — all activities normally assumed by microglia. Most interestingly, the monocytes were still present in the brain six months - nearly a quarter of the life of a laboratory mouse - after initial colonization.

These studies now published in PNAS provide evidence that blood-circulating monocytes can replace brain resident microglia and take over the essential immune surveillance of the brain. Furthermore, the findings highlight a strong homeostatic mechanism to maintain a resident immune cell within the brain. The observation that the monocytes took up long-term residence in the brain raises the possibility that these cells can be utilized to deliver therapeutic agents into the diseased brain or replace microglia when they become dysfunctional. Can monocytes be exploited to combat the consequences of Alzheimer’s disease and other neurodegenerative diseases? The scientists and their colleagues in the research groups headed by Mathias Jucker are now following exactly this research avenue.

Original publication:
“Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells”, Nicholas H. Varvel, Stefan A. Grathwohl, Frank Baumann, Christian Liebig, Andrea Bosch, Bianca Brawek, Dietmar R. Thald, Israel F. Charo, Frank L. Heppnerf, Adriano Aguzzi, Olga Garaschuk, Richard M. Ransohoff, and Mathias Jucker, Proceedings of the National Academy of Sciences (PNAS): www.pnas.org/cgi/doi/10.1073/pnas.1210150109
Lead author
Dr. Nicholas Varvel
Deutsches Zentrum für Neurodegenerative Erkrankungen & Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-81924
nicholas.varvel@dzne.de
Media contacts
Dr. Dirk Förger
Head of Press Department
Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn (Germany)
Tel.: + 49 228 43302-260
dirk.foerger@dzne.de
Silke Jakobi
Director of Communications
Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-88800
silke.jakobi@medizin.uni-tuebingen.de

Marcus Neitzert | idw
Further information:
http://www.dzne.de/

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>