Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells of the blood might replace dysfunctional brain cells

22.10.2012
Press Release from the German Center for Neurodegenerative Diseases and the Hertie Institute for Clinical Brain Research

Blood-circulating immune cells can take over the essential immune surveillance of the brain, this is shown by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the Hertie Institute for Clinical Brain Research in Tübingen. Their study, now published in PNAS, might indicate new ways of dealing with diseases of the nervous system.

The immune system is comprised of multiple cell types each capable of specialized functions to protect the body from invading pathogens and promote tissue repair after injury. One cell type, known as monocytes, circulates throughout the organism in the blood and enters tissues to actively phagocytose (eat!) foreign cells and assist in tissue healing.

While monocytes can freely enter most bodily tissues, the healthy, normal brain is different as it is sequestered from circulating blood by a tight network of cells known as the blood brain barrier. Thus, the brain must maintain a highly specialized, resident immune cell, known as microglia, to remove harmful invaders and respond to tissue damage.

In certain situations, such as during disease, monocytes can enter the brain and also contribute to tissue repair or disease progression. However, the potential for monocytes to actively replace old or injured microglia is under considerable debate. To address this, Nicholas Varvel, Stefan Grathwohl and colleagues from the German Center for Neurodegenerative Diseases (DZNE) Tübingen and the Hertie Institute for Clinical Brain Research in Tübingen used a transgenic mouse model in which almost all brain microglia cells (>95%) can be removed within two weeks. This was done by introducing a so-called suicide gene into microglia cells and administering a pharmaceutical agent that leads to acute death of the cells. Surprisingly, after the ablation of the microglia, the brain was rapidly repopulated by blood-circulating monocytes. The monocytes appeared similar, but not identical to resident microglia. The newly populated monocytes, evenly dispersed throughout the brain, responded to acute neuronal injury and other stimuli — all activities normally assumed by microglia. Most interestingly, the monocytes were still present in the brain six months - nearly a quarter of the life of a laboratory mouse - after initial colonization.

These studies now published in PNAS provide evidence that blood-circulating monocytes can replace brain resident microglia and take over the essential immune surveillance of the brain. Furthermore, the findings highlight a strong homeostatic mechanism to maintain a resident immune cell within the brain. The observation that the monocytes took up long-term residence in the brain raises the possibility that these cells can be utilized to deliver therapeutic agents into the diseased brain or replace microglia when they become dysfunctional. Can monocytes be exploited to combat the consequences of Alzheimer’s disease and other neurodegenerative diseases? The scientists and their colleagues in the research groups headed by Mathias Jucker are now following exactly this research avenue.

Original publication:
“Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells”, Nicholas H. Varvel, Stefan A. Grathwohl, Frank Baumann, Christian Liebig, Andrea Bosch, Bianca Brawek, Dietmar R. Thald, Israel F. Charo, Frank L. Heppnerf, Adriano Aguzzi, Olga Garaschuk, Richard M. Ransohoff, and Mathias Jucker, Proceedings of the National Academy of Sciences (PNAS): www.pnas.org/cgi/doi/10.1073/pnas.1210150109
Lead author
Dr. Nicholas Varvel
Deutsches Zentrum für Neurodegenerative Erkrankungen & Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-81924
nicholas.varvel@dzne.de
Media contacts
Dr. Dirk Förger
Head of Press Department
Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn (Germany)
Tel.: + 49 228 43302-260
dirk.foerger@dzne.de
Silke Jakobi
Director of Communications
Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-88800
silke.jakobi@medizin.uni-tuebingen.de

Marcus Neitzert | idw
Further information:
http://www.dzne.de/

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>