Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells of the blood might replace dysfunctional brain cells

22.10.2012
Press Release from the German Center for Neurodegenerative Diseases and the Hertie Institute for Clinical Brain Research

Blood-circulating immune cells can take over the essential immune surveillance of the brain, this is shown by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the Hertie Institute for Clinical Brain Research in Tübingen. Their study, now published in PNAS, might indicate new ways of dealing with diseases of the nervous system.

The immune system is comprised of multiple cell types each capable of specialized functions to protect the body from invading pathogens and promote tissue repair after injury. One cell type, known as monocytes, circulates throughout the organism in the blood and enters tissues to actively phagocytose (eat!) foreign cells and assist in tissue healing.

While monocytes can freely enter most bodily tissues, the healthy, normal brain is different as it is sequestered from circulating blood by a tight network of cells known as the blood brain barrier. Thus, the brain must maintain a highly specialized, resident immune cell, known as microglia, to remove harmful invaders and respond to tissue damage.

In certain situations, such as during disease, monocytes can enter the brain and also contribute to tissue repair or disease progression. However, the potential for monocytes to actively replace old or injured microglia is under considerable debate. To address this, Nicholas Varvel, Stefan Grathwohl and colleagues from the German Center for Neurodegenerative Diseases (DZNE) Tübingen and the Hertie Institute for Clinical Brain Research in Tübingen used a transgenic mouse model in which almost all brain microglia cells (>95%) can be removed within two weeks. This was done by introducing a so-called suicide gene into microglia cells and administering a pharmaceutical agent that leads to acute death of the cells. Surprisingly, after the ablation of the microglia, the brain was rapidly repopulated by blood-circulating monocytes. The monocytes appeared similar, but not identical to resident microglia. The newly populated monocytes, evenly dispersed throughout the brain, responded to acute neuronal injury and other stimuli — all activities normally assumed by microglia. Most interestingly, the monocytes were still present in the brain six months - nearly a quarter of the life of a laboratory mouse - after initial colonization.

These studies now published in PNAS provide evidence that blood-circulating monocytes can replace brain resident microglia and take over the essential immune surveillance of the brain. Furthermore, the findings highlight a strong homeostatic mechanism to maintain a resident immune cell within the brain. The observation that the monocytes took up long-term residence in the brain raises the possibility that these cells can be utilized to deliver therapeutic agents into the diseased brain or replace microglia when they become dysfunctional. Can monocytes be exploited to combat the consequences of Alzheimer’s disease and other neurodegenerative diseases? The scientists and their colleagues in the research groups headed by Mathias Jucker are now following exactly this research avenue.

Original publication:
“Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells”, Nicholas H. Varvel, Stefan A. Grathwohl, Frank Baumann, Christian Liebig, Andrea Bosch, Bianca Brawek, Dietmar R. Thald, Israel F. Charo, Frank L. Heppnerf, Adriano Aguzzi, Olga Garaschuk, Richard M. Ransohoff, and Mathias Jucker, Proceedings of the National Academy of Sciences (PNAS): www.pnas.org/cgi/doi/10.1073/pnas.1210150109
Lead author
Dr. Nicholas Varvel
Deutsches Zentrum für Neurodegenerative Erkrankungen & Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-81924
nicholas.varvel@dzne.de
Media contacts
Dr. Dirk Förger
Head of Press Department
Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn (Germany)
Tel.: + 49 228 43302-260
dirk.foerger@dzne.de
Silke Jakobi
Director of Communications
Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-88800
silke.jakobi@medizin.uni-tuebingen.de

Marcus Neitzert | idw
Further information:
http://www.dzne.de/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>