Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells of the blood might replace dysfunctional brain cells

22.10.2012
Press Release from the German Center for Neurodegenerative Diseases and the Hertie Institute for Clinical Brain Research

Blood-circulating immune cells can take over the essential immune surveillance of the brain, this is shown by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the Hertie Institute for Clinical Brain Research in Tübingen. Their study, now published in PNAS, might indicate new ways of dealing with diseases of the nervous system.

The immune system is comprised of multiple cell types each capable of specialized functions to protect the body from invading pathogens and promote tissue repair after injury. One cell type, known as monocytes, circulates throughout the organism in the blood and enters tissues to actively phagocytose (eat!) foreign cells and assist in tissue healing.

While monocytes can freely enter most bodily tissues, the healthy, normal brain is different as it is sequestered from circulating blood by a tight network of cells known as the blood brain barrier. Thus, the brain must maintain a highly specialized, resident immune cell, known as microglia, to remove harmful invaders and respond to tissue damage.

In certain situations, such as during disease, monocytes can enter the brain and also contribute to tissue repair or disease progression. However, the potential for monocytes to actively replace old or injured microglia is under considerable debate. To address this, Nicholas Varvel, Stefan Grathwohl and colleagues from the German Center for Neurodegenerative Diseases (DZNE) Tübingen and the Hertie Institute for Clinical Brain Research in Tübingen used a transgenic mouse model in which almost all brain microglia cells (>95%) can be removed within two weeks. This was done by introducing a so-called suicide gene into microglia cells and administering a pharmaceutical agent that leads to acute death of the cells. Surprisingly, after the ablation of the microglia, the brain was rapidly repopulated by blood-circulating monocytes. The monocytes appeared similar, but not identical to resident microglia. The newly populated monocytes, evenly dispersed throughout the brain, responded to acute neuronal injury and other stimuli — all activities normally assumed by microglia. Most interestingly, the monocytes were still present in the brain six months - nearly a quarter of the life of a laboratory mouse - after initial colonization.

These studies now published in PNAS provide evidence that blood-circulating monocytes can replace brain resident microglia and take over the essential immune surveillance of the brain. Furthermore, the findings highlight a strong homeostatic mechanism to maintain a resident immune cell within the brain. The observation that the monocytes took up long-term residence in the brain raises the possibility that these cells can be utilized to deliver therapeutic agents into the diseased brain or replace microglia when they become dysfunctional. Can monocytes be exploited to combat the consequences of Alzheimer’s disease and other neurodegenerative diseases? The scientists and their colleagues in the research groups headed by Mathias Jucker are now following exactly this research avenue.

Original publication:
“Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells”, Nicholas H. Varvel, Stefan A. Grathwohl, Frank Baumann, Christian Liebig, Andrea Bosch, Bianca Brawek, Dietmar R. Thald, Israel F. Charo, Frank L. Heppnerf, Adriano Aguzzi, Olga Garaschuk, Richard M. Ransohoff, and Mathias Jucker, Proceedings of the National Academy of Sciences (PNAS): www.pnas.org/cgi/doi/10.1073/pnas.1210150109
Lead author
Dr. Nicholas Varvel
Deutsches Zentrum für Neurodegenerative Erkrankungen & Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-81924
nicholas.varvel@dzne.de
Media contacts
Dr. Dirk Förger
Head of Press Department
Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn (Germany)
Tel.: + 49 228 43302-260
dirk.foerger@dzne.de
Silke Jakobi
Director of Communications
Hertie-Institut für klinische Hirnforschung, Tübingen (Germany)
Tel.: + 49 7071 29-88800
silke.jakobi@medizin.uni-tuebingen.de

Marcus Neitzert | idw
Further information:
http://www.dzne.de/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>