Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells with a killer instinct: Tried-and-tested anti-tumor drug displays new effect

26.03.2012
Imiquimod, a drug used to treat skin cancer, has been shown to have a previously unknown effect on immune cells. The drug transforms cells known as dendritic cells into "tumour killers" that attack the tumour directly and destroy its cells.

The dendritic cells adopt an ingenious approach here - they not only produce special substances with a cell-damaging effect, they also manage to fight the tumour without the help of T and B cells and natural killer (NK) cells. This complex interaction was discovered by scientists participating in a doctoral programme of the Austrian Science Fund FWF. It was also recently published and commented on in the Journal of Clinical Investigation.

For 15 years now the drug Imiquimod has been authorised for the treatment of certain skin diseases, including some types of skin cancer. And during that period, the drug, which is administered as a skin cream, has proven to be an effective treatment. Despite this therapeutic success, the drug´s exact mechanism of action was not known to date. However, a research group working with Prof. Maria Sibilia, Head of the Institute for Cancer Research at the Medical University of Vienna, has now succeeded in determining some unknown and surprising effects of Imiquimod (Imi) on special immune cells.

CELLULAR INFANTRY
In a mouse model for malignant melanoma, Prof. Sibilia and her team succeeded in demonstrating that Imiquimod not only triggers the "recruitment" of special immune cells, but also "arms" them for the battle against tumour cells. "We were able to show that Imi has an immediate and direct effect on mast cells in the skin. Mast cells are immune system cells that can release messenger substances for the control of an immune response. In reaction to Imi, which activates special receptors known as toll-like receptors, mast cells release CCL2 messenger substances - a starting signal that triggers a response with fatal consequences for tumour cells," explains Dr. Barbara Drobits, key scientist in the FWF-funded doctoral programme responsible for the discovery.

The group actually succeeded in demonstrating that CCL2 then causes the migration of additional immune system cells. The analysis of the subsequent activity of these immune cells generated a real surprise for the scientists: the immune cells, called plasmacytoid dendritic cells (pDCs), were considered to be modulators up to now. However, in their reaction to Imi, they proved to be bona fide aggressors.

FIGHTING STRATEGY
Prof. Sibilia reports: "My team succeeded in decoding an important aspect of the mechanism of action triggered by Imiquimod and the role of the pDCs in this process. This is part of a complex strategy adopted by the body in the fight against tumours. pDCs were not only attracted by CCL2, but were also prompted to produce interferon alpha (IFN alpha) in response Imi." IFN alpha actually triggers the production of different substances (TRAIL, granzyme B) that can have a fatal effect on tumour cells. As another special characteristic, it was possible to show, for the first time, that pDCs themselves initiate the destruction of the tumour cells independent of the immune cells of the adaptive immune system (B and T cells) and without the help of NK cells, both of which are considered important components of the anti-tumoural immune response.

Overall, the team from the doctoral programme "Inflammation and Immunity" succeeded in discovering a new mechanism of action of dendritic cells in fighting tumours; it had never been possible before to observe such a direct attack on tumours by pDCs. Further studies will reveal the extent to which this discovery will benefit the development of innovative cancer therapies. Some important questions remain open, however, as Dr. Drobits explains: "It is known that some tumour cells produce CCL2 themselves. In other words, they should have triggered the same cascade as Imi. But this did not always result in a positive disease progression. We do not yet know why this is the case and it needs to be explained." In meeting challenges like this, the FWF´s doctoral programme once again proves that it is fulfilling an important goal: to give young scientists the opportunity to work at the vanguard of cutting-edge science.

Original publication: Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. B. Drobits, M. Holcmann, N. Amberg, M. Swiecki, R. Grundtner, M. Hammer, M. Colonna, and M. Sibilia. J Clin Invest. 2012;122(2):575 585. doi:10.1172/JCI61034.

Picture and text available from Monday, March 26 2012, 9 am CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201203-en.html
Scientific Contact:
Prof. Maria Sibilia
Institute for Cancer Research
Medical University Vienna
Borschkegasse 8a
1090 Vienna, Austria
T +43 / (0)1 / 4277 65211
E Maria.Sibilia@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research and Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Stefan Bernhardt | PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>