Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells with a killer instinct: Tried-and-tested anti-tumor drug displays new effect

26.03.2012
Imiquimod, a drug used to treat skin cancer, has been shown to have a previously unknown effect on immune cells. The drug transforms cells known as dendritic cells into "tumour killers" that attack the tumour directly and destroy its cells.

The dendritic cells adopt an ingenious approach here - they not only produce special substances with a cell-damaging effect, they also manage to fight the tumour without the help of T and B cells and natural killer (NK) cells. This complex interaction was discovered by scientists participating in a doctoral programme of the Austrian Science Fund FWF. It was also recently published and commented on in the Journal of Clinical Investigation.

For 15 years now the drug Imiquimod has been authorised for the treatment of certain skin diseases, including some types of skin cancer. And during that period, the drug, which is administered as a skin cream, has proven to be an effective treatment. Despite this therapeutic success, the drug´s exact mechanism of action was not known to date. However, a research group working with Prof. Maria Sibilia, Head of the Institute for Cancer Research at the Medical University of Vienna, has now succeeded in determining some unknown and surprising effects of Imiquimod (Imi) on special immune cells.

CELLULAR INFANTRY
In a mouse model for malignant melanoma, Prof. Sibilia and her team succeeded in demonstrating that Imiquimod not only triggers the "recruitment" of special immune cells, but also "arms" them for the battle against tumour cells. "We were able to show that Imi has an immediate and direct effect on mast cells in the skin. Mast cells are immune system cells that can release messenger substances for the control of an immune response. In reaction to Imi, which activates special receptors known as toll-like receptors, mast cells release CCL2 messenger substances - a starting signal that triggers a response with fatal consequences for tumour cells," explains Dr. Barbara Drobits, key scientist in the FWF-funded doctoral programme responsible for the discovery.

The group actually succeeded in demonstrating that CCL2 then causes the migration of additional immune system cells. The analysis of the subsequent activity of these immune cells generated a real surprise for the scientists: the immune cells, called plasmacytoid dendritic cells (pDCs), were considered to be modulators up to now. However, in their reaction to Imi, they proved to be bona fide aggressors.

FIGHTING STRATEGY
Prof. Sibilia reports: "My team succeeded in decoding an important aspect of the mechanism of action triggered by Imiquimod and the role of the pDCs in this process. This is part of a complex strategy adopted by the body in the fight against tumours. pDCs were not only attracted by CCL2, but were also prompted to produce interferon alpha (IFN alpha) in response Imi." IFN alpha actually triggers the production of different substances (TRAIL, granzyme B) that can have a fatal effect on tumour cells. As another special characteristic, it was possible to show, for the first time, that pDCs themselves initiate the destruction of the tumour cells independent of the immune cells of the adaptive immune system (B and T cells) and without the help of NK cells, both of which are considered important components of the anti-tumoural immune response.

Overall, the team from the doctoral programme "Inflammation and Immunity" succeeded in discovering a new mechanism of action of dendritic cells in fighting tumours; it had never been possible before to observe such a direct attack on tumours by pDCs. Further studies will reveal the extent to which this discovery will benefit the development of innovative cancer therapies. Some important questions remain open, however, as Dr. Drobits explains: "It is known that some tumour cells produce CCL2 themselves. In other words, they should have triggered the same cascade as Imi. But this did not always result in a positive disease progression. We do not yet know why this is the case and it needs to be explained." In meeting challenges like this, the FWF´s doctoral programme once again proves that it is fulfilling an important goal: to give young scientists the opportunity to work at the vanguard of cutting-edge science.

Original publication: Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. B. Drobits, M. Holcmann, N. Amberg, M. Swiecki, R. Grundtner, M. Hammer, M. Colonna, and M. Sibilia. J Clin Invest. 2012;122(2):575 585. doi:10.1172/JCI61034.

Picture and text available from Monday, March 26 2012, 9 am CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201203-en.html
Scientific Contact:
Prof. Maria Sibilia
Institute for Cancer Research
Medical University Vienna
Borschkegasse 8a
1090 Vienna, Austria
T +43 / (0)1 / 4277 65211
E Maria.Sibilia@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research and Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Stefan Bernhardt | PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>