Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells with a killer instinct: Tried-and-tested anti-tumor drug displays new effect

26.03.2012
Imiquimod, a drug used to treat skin cancer, has been shown to have a previously unknown effect on immune cells. The drug transforms cells known as dendritic cells into "tumour killers" that attack the tumour directly and destroy its cells.

The dendritic cells adopt an ingenious approach here - they not only produce special substances with a cell-damaging effect, they also manage to fight the tumour without the help of T and B cells and natural killer (NK) cells. This complex interaction was discovered by scientists participating in a doctoral programme of the Austrian Science Fund FWF. It was also recently published and commented on in the Journal of Clinical Investigation.

For 15 years now the drug Imiquimod has been authorised for the treatment of certain skin diseases, including some types of skin cancer. And during that period, the drug, which is administered as a skin cream, has proven to be an effective treatment. Despite this therapeutic success, the drug´s exact mechanism of action was not known to date. However, a research group working with Prof. Maria Sibilia, Head of the Institute for Cancer Research at the Medical University of Vienna, has now succeeded in determining some unknown and surprising effects of Imiquimod (Imi) on special immune cells.

CELLULAR INFANTRY
In a mouse model for malignant melanoma, Prof. Sibilia and her team succeeded in demonstrating that Imiquimod not only triggers the "recruitment" of special immune cells, but also "arms" them for the battle against tumour cells. "We were able to show that Imi has an immediate and direct effect on mast cells in the skin. Mast cells are immune system cells that can release messenger substances for the control of an immune response. In reaction to Imi, which activates special receptors known as toll-like receptors, mast cells release CCL2 messenger substances - a starting signal that triggers a response with fatal consequences for tumour cells," explains Dr. Barbara Drobits, key scientist in the FWF-funded doctoral programme responsible for the discovery.

The group actually succeeded in demonstrating that CCL2 then causes the migration of additional immune system cells. The analysis of the subsequent activity of these immune cells generated a real surprise for the scientists: the immune cells, called plasmacytoid dendritic cells (pDCs), were considered to be modulators up to now. However, in their reaction to Imi, they proved to be bona fide aggressors.

FIGHTING STRATEGY
Prof. Sibilia reports: "My team succeeded in decoding an important aspect of the mechanism of action triggered by Imiquimod and the role of the pDCs in this process. This is part of a complex strategy adopted by the body in the fight against tumours. pDCs were not only attracted by CCL2, but were also prompted to produce interferon alpha (IFN alpha) in response Imi." IFN alpha actually triggers the production of different substances (TRAIL, granzyme B) that can have a fatal effect on tumour cells. As another special characteristic, it was possible to show, for the first time, that pDCs themselves initiate the destruction of the tumour cells independent of the immune cells of the adaptive immune system (B and T cells) and without the help of NK cells, both of which are considered important components of the anti-tumoural immune response.

Overall, the team from the doctoral programme "Inflammation and Immunity" succeeded in discovering a new mechanism of action of dendritic cells in fighting tumours; it had never been possible before to observe such a direct attack on tumours by pDCs. Further studies will reveal the extent to which this discovery will benefit the development of innovative cancer therapies. Some important questions remain open, however, as Dr. Drobits explains: "It is known that some tumour cells produce CCL2 themselves. In other words, they should have triggered the same cascade as Imi. But this did not always result in a positive disease progression. We do not yet know why this is the case and it needs to be explained." In meeting challenges like this, the FWF´s doctoral programme once again proves that it is fulfilling an important goal: to give young scientists the opportunity to work at the vanguard of cutting-edge science.

Original publication: Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. B. Drobits, M. Holcmann, N. Amberg, M. Swiecki, R. Grundtner, M. Hammer, M. Colonna, and M. Sibilia. J Clin Invest. 2012;122(2):575 585. doi:10.1172/JCI61034.

Picture and text available from Monday, March 26 2012, 9 am CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201203-en.html
Scientific Contact:
Prof. Maria Sibilia
Institute for Cancer Research
Medical University Vienna
Borschkegasse 8a
1090 Vienna, Austria
T +43 / (0)1 / 4277 65211
E Maria.Sibilia@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research and Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Stefan Bernhardt | PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>