Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune Cell Suicide Alarm Helps Destroy Escaping Bacteria

25.01.2013
Cells in the immune system called macrophages normally engulf and kill intruding bacteria, holding them inside a membrane-bound bag called a vacuole, where they kill and digest them.

Some bacteria thwart this effort by ripping the bag open and then escaping into the macrophage’s nutrient-rich cytosol compartment, where they divide and could eventually go on to invade other cells.


Miao lab, UNC School of Medicine.

Shown in red are bacteria that have invaded host cells and escaped into the interior cytosolic compartment of the cell.

But research from the University of North Carolina School of Medicine shows that macrophages have a suicide alarm system, a signaling pathway to detect this escape into the cytosol. The pathway activates an enzyme, called caspase-11, that triggers a program in the macrophage to destroy itself.

“It’s almost like a thief sneaking into the house not knowing an alarm will go off to knock down the walls and expose him to capture by the police,” says study senior and corresponding author Edward Miao, PhD, assistant professor of microbiology and immunology at UNC. “In the macrophage, this cell death, called pyroptosis, expels the bacterium from the cell, exposing it to other immune defense mechanisms.”

A report of the research appears online in the journal Science on Thursday January 24, 2013.

Miao, also a member of the UNC Lineberger Comprehensive Cancer Center, says the new findings show that having this detection pathway protects mice from lethal infection with the type of vacuole-escaping Burkholderia species: B. thailandensis and B. pseudomallei.

Both are close relatives. But they differ in lethality. B. pseudomallei is potentially a biological weapon. Used in a spray, it could potentially infect people via aerosol route, causing sickness and death. Moreover, it also could fall into a latent phase, “essentially turning into a ‘sleeper’ inside the lungs and hiding there for decades,” Miao explains. In contrast, B. thailandensis, which shares many properties with its species counterpart, is not normally able to cause any disease or infection

These environmental bacteria are ubiquitous throughout S.E. Asia, and were it not for the caspase-11 pathway defense system, that part of the world could be uninhabitable, Miao points out.

This grim possibility clearly emerged in the study. Mice that lack the caspase-11 detection pathway succumb to infection not only by B. pseudomallei, but also to the normally benign B. thailandensis. “Thus caspase-11 is critical for surviving exposure to ubiquitous environmental pathogens,” the authors conclude.

Miao points to research elsewhere showing that the pathway’s abnormal activation in people with septic shock, overwhelming bacterial infection of the blood, is associated with death. “We discovered what the pathway is supposed to do, which may help find ways to tone it down in people with that critical condition.

As to bioterrorism, the researcher says it may be possible to use certain drugs already on the market that safely induce the caspase-11 pathway. “Since this pathway requires pre-stimulation with interferon cytokines, it is conceivable that pre-treating people with interferon drugs could ameliorate a bioterror incident. This could be quite important in the case of Burkholderia, since these bacteria are naturally resistant to numerous antibiotics.

“But first we have to find out if they would work in animal models, and consider the logistics of interferon stockpiling, which are currently cost prohibitive.”

UNC co-authors are Youssef Aachoui, Jon A. Hagar, Peggy A. Cotter and Christine G. Campos. Alan Aderem, Irina A. Leaf, Daniel E. Zak are from Seattle Biomedical Research Institute, Seattle, Wash. Russell E. Vance, Mary F. Fontana and Michael Tan are from the department of molecular and cell biology, University of California at Berkeley.

This work was supported by NIH grants AI097518 (E.A.M.) and AI057141 (E.A.M. and A.A.), AI065359 (P.A.C.), AI075039 (R.E.V.), AI080749 (R.E.V.), and AI063302 (R.E.V.) Investigator Awards from the Burroughs Wellcome Fund and Cancer Research Institute (R.E.V.), and an NSF graduate fellowship (M.F.F.).

Les Lang | Newswise
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>