Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune cell activation under the microscope

The application of sophisticated imaging techniques illuminates spatio-temporal regulation critical for T cell activation

T cells are central to an organism’s defense against invading pathogens. But scientists have long puzzled over how they are activated and regulated after pathogen recognition. Now a team of researchers, led by Takashi Saito from the RIKEN Research Center for Allergy and Immunology in Yokohama, has succeeded in imaging molecular events that are crucial for these processes.

Full activation and differentiation of T cells requires a primary signal from T cell receptors (TCRs) upon interaction with an antigen-presenting cell (APC), and a second, distinct signal transmitted through ‘costimulatory’ receptors.

The receptor CD28 plays a predominant role in T cell costimulation. CD28-mediated signals augment many T cell functions, such as cytokine production and cell proliferation.

Modulation of these costimulatory signals has been applied in clinical trials by increasing tumor immunity and reducing autoimmune diseases. But the precise roles of molecules implicated in CD28-mediated costimulatory signals and their relationship with TCR signals require clarification.

Antigen-specific T cells ‘communicate’ with APCs through an ‘immunological synapse’, which forms at their interface and contains a central (c-) and a peripheral (p-) supramolecular activation cluster (SMAC).

At initial activation, TCRs form microclusters, which contain receptors, kinases, and adaptor proteins to induce activation signals at the interface between a T cell and an APC. These microclusters translocate to the center of the interface, resulting in cSMAC formation.

The role of microcluster translocation in T cell signaling has been unclear, and the concept that they function as signaling centers for T cell activation has raised questions as to how CD28-mediated costimulation is regulated.

Using sophisticated fluorescence microscopy techniques to study CD28-mediated costimulation at the molecular level, Saito and colleagues have found that the accumulation of microclusters at cSMAC is important for T cell costimulation. CD28 is initially recruited together with TCRs to microclusters. PKCè—a protein kinase acting downstream of CD28—is also recruited to microclusters by association with CD28, thereby resulting in the initial activation of T cells.

CD28 also plays a role in retaining PKCè at a spatially unique subregion of cSMAC, leading to sustained signals for T cell activation. “Thus, costimulation is mediated by the generation of a unique costimulatory compartment in the cSMAC via the dynamic regulation of microcluster translocation,” say the researchers.

Establishing the underlying mechanisms should lead to new treatments for autoimmune diseases, such as rheumatoid arthritis and psoriasis, as well as the prevention of graft versus host disease in transplantation, more effective vaccinations, and augmented anti-tumor immunity.


1. Yokosuka, T., Kobayashi, W., Sakata-Sogawa, K., Takamatsu, M., Hashimoto-Tane, M., Dustin, M.L., Tokunaga, M. & Saito, T. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C è translocation. Immunity 29, 589–601 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Signaling

Saeko Okada | ResearchSEA
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>