Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cell activation under the microscope

09.02.2009
The application of sophisticated imaging techniques illuminates spatio-temporal regulation critical for T cell activation

T cells are central to an organism’s defense against invading pathogens. But scientists have long puzzled over how they are activated and regulated after pathogen recognition. Now a team of researchers, led by Takashi Saito from the RIKEN Research Center for Allergy and Immunology in Yokohama, has succeeded in imaging molecular events that are crucial for these processes.

Full activation and differentiation of T cells requires a primary signal from T cell receptors (TCRs) upon interaction with an antigen-presenting cell (APC), and a second, distinct signal transmitted through ‘costimulatory’ receptors.

The receptor CD28 plays a predominant role in T cell costimulation. CD28-mediated signals augment many T cell functions, such as cytokine production and cell proliferation.

Modulation of these costimulatory signals has been applied in clinical trials by increasing tumor immunity and reducing autoimmune diseases. But the precise roles of molecules implicated in CD28-mediated costimulatory signals and their relationship with TCR signals require clarification.

Antigen-specific T cells ‘communicate’ with APCs through an ‘immunological synapse’, which forms at their interface and contains a central (c-) and a peripheral (p-) supramolecular activation cluster (SMAC).

At initial activation, TCRs form microclusters, which contain receptors, kinases, and adaptor proteins to induce activation signals at the interface between a T cell and an APC. These microclusters translocate to the center of the interface, resulting in cSMAC formation.

The role of microcluster translocation in T cell signaling has been unclear, and the concept that they function as signaling centers for T cell activation has raised questions as to how CD28-mediated costimulation is regulated.

Using sophisticated fluorescence microscopy techniques to study CD28-mediated costimulation at the molecular level, Saito and colleagues have found that the accumulation of microclusters at cSMAC is important for T cell costimulation. CD28 is initially recruited together with TCRs to microclusters. PKCè—a protein kinase acting downstream of CD28—is also recruited to microclusters by association with CD28, thereby resulting in the initial activation of T cells.

CD28 also plays a role in retaining PKCè at a spatially unique subregion of cSMAC, leading to sustained signals for T cell activation. “Thus, costimulation is mediated by the generation of a unique costimulatory compartment in the cSMAC via the dynamic regulation of microcluster translocation,” say the researchers.

Establishing the underlying mechanisms should lead to new treatments for autoimmune diseases, such as rheumatoid arthritis and psoriasis, as well as the prevention of graft versus host disease in transplantation, more effective vaccinations, and augmented anti-tumor immunity.

Reference

1. Yokosuka, T., Kobayashi, W., Sakata-Sogawa, K., Takamatsu, M., Hashimoto-Tane, M., Dustin, M.L., Tokunaga, M. & Saito, T. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C è translocation. Immunity 29, 589–601 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Signaling

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/644/
http://www.researchsea.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>