Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cell activation under the microscope

09.02.2009
The application of sophisticated imaging techniques illuminates spatio-temporal regulation critical for T cell activation

T cells are central to an organism’s defense against invading pathogens. But scientists have long puzzled over how they are activated and regulated after pathogen recognition. Now a team of researchers, led by Takashi Saito from the RIKEN Research Center for Allergy and Immunology in Yokohama, has succeeded in imaging molecular events that are crucial for these processes.

Full activation and differentiation of T cells requires a primary signal from T cell receptors (TCRs) upon interaction with an antigen-presenting cell (APC), and a second, distinct signal transmitted through ‘costimulatory’ receptors.

The receptor CD28 plays a predominant role in T cell costimulation. CD28-mediated signals augment many T cell functions, such as cytokine production and cell proliferation.

Modulation of these costimulatory signals has been applied in clinical trials by increasing tumor immunity and reducing autoimmune diseases. But the precise roles of molecules implicated in CD28-mediated costimulatory signals and their relationship with TCR signals require clarification.

Antigen-specific T cells ‘communicate’ with APCs through an ‘immunological synapse’, which forms at their interface and contains a central (c-) and a peripheral (p-) supramolecular activation cluster (SMAC).

At initial activation, TCRs form microclusters, which contain receptors, kinases, and adaptor proteins to induce activation signals at the interface between a T cell and an APC. These microclusters translocate to the center of the interface, resulting in cSMAC formation.

The role of microcluster translocation in T cell signaling has been unclear, and the concept that they function as signaling centers for T cell activation has raised questions as to how CD28-mediated costimulation is regulated.

Using sophisticated fluorescence microscopy techniques to study CD28-mediated costimulation at the molecular level, Saito and colleagues have found that the accumulation of microclusters at cSMAC is important for T cell costimulation. CD28 is initially recruited together with TCRs to microclusters. PKCè—a protein kinase acting downstream of CD28—is also recruited to microclusters by association with CD28, thereby resulting in the initial activation of T cells.

CD28 also plays a role in retaining PKCè at a spatially unique subregion of cSMAC, leading to sustained signals for T cell activation. “Thus, costimulation is mediated by the generation of a unique costimulatory compartment in the cSMAC via the dynamic regulation of microcluster translocation,” say the researchers.

Establishing the underlying mechanisms should lead to new treatments for autoimmune diseases, such as rheumatoid arthritis and psoriasis, as well as the prevention of graft versus host disease in transplantation, more effective vaccinations, and augmented anti-tumor immunity.

Reference

1. Yokosuka, T., Kobayashi, W., Sakata-Sogawa, K., Takamatsu, M., Hashimoto-Tane, M., Dustin, M.L., Tokunaga, M. & Saito, T. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C è translocation. Immunity 29, 589–601 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Signaling

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/644/
http://www.researchsea.com

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>