Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cell 'survival' gene key to better myeloma treatments

04.02.2013
Scientists have identified the gene essential for survival of antibody-producing cells, a finding that could lead to better treatments for diseases where these cells are out of control, such as myeloma and chronic immune disorders.

The discovery that a gene called Mcl-1 is critical for keeping this vital immune cell population alive was made by researchers at Melbourne's Walter and Eliza Hall Institute. Associate Professor David Tarlinton, Dr Victor Peperzak and Dr Ingela Vikstrom from the institute's Immunology division led the research, which was published today in Nature Immunology.

Antibody-producing cells, also known as plasma cells, live in the bone marrow and make antibodies that provide a person with long-term protection from viruses and bacteria, Associate Professor Tarlinton said. "Plasma cells are produced after vaccination or infection and are responsible for the immune 'memory' that can persist in humans for 70 or 80 years. In this study, we found that plasma cells critically rely on Mcl-1 for their continued survival and, without it, they die within two days," he said.

Dr Peperzak said the team was surprised to find that plasma cells used this as a 'failsafe' mechanism in controlling their survival. "One of the interesting things we found is that because plasma cells rapidly destroy Mcl-1 proteins within the cell yet depend on it for their survival, they need continuous external signals to tell them to produce more Mcl-1 protein," Dr Peperzak said. "This keeps the plasma cells under tight control, with Mcl-1 acting like a timer that constantly counts down and, if not reset, instructs the cell to die."

Plasma cells are vital to the immune response, but can be dangerous if not properly controlled, Associate Professor Tarlinton said. "As with any immune cell, plasma cells are really quite dangerous in many respects and need to be tightly controlled," he said. "When they are out of control they continue to make antibodies that can be very damaging if there are too many. This happens in conditions such as myeloma – a cancer of plasma cells – and various forms of autoimmunity, such as systemic lupus erythamatosus or rheumatoid arthritis, where there are excessive levels of antibodies."

Myeloma is a blood cancer that affects more than 1200 Australians each year, and is more common in people over 60. It is caused by the uncontrolled production of abnormal plasma cells in the bone marrow and the build up of damaging antibodies in the blood. Rheumatoid arthritis and lupus are autoimmune diseases in which the antibodies produced by plasma cells attack and destroy the body's own tissues.

Associate Professor Tarlinton said that his hope was that the discovery could be used to develop new treatments for these conditions. "Myeloma in particular has a very poor prognosis, and is generally considered incurable," Associate Professor Tarlinton said. "Now that we know Mcl-1 is the one essential gene needed to keep plasma cells alive, we have begun 'working backwards' to identify all the critical molecules and signals needed to switch on Mcl-1 and keep the cells alive. Our hope is that we will identify some point in the internal cell signalling pathway, or a critical external molecule, that could be blocked to stop Mcl-1 being produced by the cell. This would be an important new platform for diseases that currently have no specific or effective treatment, such as myeloma, or offer new treatment options for people who don't respond well to existing treatments for diseases such as lupus or rheumatoid arthritis."

This research was supported by the National Health and Medical Research Council of Australia, Multiple Myeloma Research Foundation, European Molecular Biology Organization and the Victorian Government.

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>