Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immature and misleading

12.04.2012
Are modern molecular classification methods for breast carcinomas reasonable?

Austrian scientists challenge the clinical relevance of the term “basal-like” breast cancer subtype. Not all breast cancers are the same. Different types can mean different prognoses for the patient, and a different kind of treatment may be adequate. But how to classify tumors? Are molecular classification methods reliable?

Mohammad Ali Lavasani and Farid Moinfar from the Unit of Breast and Gynecologic Pathology at the Medical University of Graz, Austria give a critical review of the literature with focus on “basal-like” carcinoma.

The conventional clinicopathological parameters such as histologic grade, nuclear grade, tumor size, involvement of axillary lymph nodes, etc., all have been successfully correlated to prognosis of patients with breast carcinoma. Yet, the current prognostic and/or predictive factors have significant limitations in distinguishing breast cancer patients who could benefit from (neo)adjuvant chemotherapy from those who do not need any additional treatment.

Indeed, it has been suggested that almost 70% of patients with breast cancer receiving chemotherapy or antihormonal therapy would have survived without such treatments, as Lavasani and Moinfar state in their review.

With the introduction of complementary DNA (cDNA) and oligonucleotide microarrays in the 1990s, the increasing application of these high-throughput biotechnologies, and significant improvement in bioinformatic analyses a new era began: Genome-wide approaches were used to prognostify and predict outcome in patients with breast cancer. During the last 11 years, 5 molecular subtypes of breast carcinoma (luminal A, luminal B, Her2-positive, basal-like, and normal breast-like) have been characterized and intensively studied. As genomic research evolves, further subtypes of breast cancers into new “molecular entities” are expected to occur. For example, a new and rare breast cancer subtype, known as claudin-low, has been recently found.

“There is no doubt that global gene expression analyses using high-throughput biotechnologies have drastically improved our understanding of breast cancer as a heterogeneous disease”, say Lavasani and Moinfar. “The main question is, however, whether new molecular techniques such as gene expression profiling (or signature) should be regarded as the gold standard for identifying breast cancer subtypes.” When reviewing the literature, the two scientists discovered major problems with current molecular techniques and classification including poor definitions, lack of reproducibility, and lack of quality control. They conclude: “The current molecular approaches cannot be incorporated into routine clinical practice and treatment decision making as they are immature or even can be misleading.”

The “basal-like” breast cancer subtype represents one of the most popular breast cancer “entities”. However, the authors revealed some major problems and misconceptions with and about this subtype and denote the term “basal-like” as misleading. They come to the conclusion that there is no evidence that expression of basal-type cytokeratins in a given breast cancer, regardless of other established prognostic factors, does have any impact on clinical outcome. Lavasani and Moinfar are convinced that these so-called basal-like carcinomas do not reflect a single, biologically uniform group of breast cancers. Indeed, they show significant variations in their phenotypes, grades, immunoprofiles, and clinical outcomes. (Text by K. Maedefessel-Herrmann)

M. A. Lavasani and F. Moinfar, J. Biophotonics 5(4), 345-366 (2012); http://dx.doi.org/10.1002/jbio.201100097

Journal of Biophotonics publishes cutting edge research on interactions between light and biological material. The journal is highly interdisciplinary, covering research in the fields of life sciences, medicine, physics, chemistry, and enginieering. The scope extends from basic research to clinical applications. Connecting scientists who try to understand basic biological processes using light as a diagnostic and therapeutic tool, the journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for diagnosis of diseases. JBP offers fast publication times: down to 20 days from acceptance to publication. Latest Journal Impact Factor (2010): 4.240 (ISI Journal Citation Reports 2010)

Regina Hagen
Journal Publishing Manager | Editorial Physics Department
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstr. 21, 10245 Berlin, Germany
Fon: +49 (0) 30/ 47 03 13 21
Fax: +49 (0) 30/ 47 03 13 99
E-Mail: regina.hagen@wiley.com

Lavasani and F. Moinfar | Wiley-VCH
Further information:
http://dx.doi.org/10.1002/jbio.201100097
http://www.wiley.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>