Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imagining technique could lead to better antibiotics and cancer drugs

11.11.2009
Mass spectrometry used to monitor chemical warfare between microbes

A recently devised method of imaging the chemical communication and warfare between microorganisms could lead to new antibiotics, antifungal, antiviral and anti-cancer drugs, said a Texas AgriLife Research scientist.

"Translating metabolic exchange with imaging mass spectrometry," was published Nov. 8 in Nature Chemical Biology, a prominent scientific journal. The article describes a technique developed by a collaborative team that includes Dr. Paul Straight, AgriLife Research scientist in the department of biochemistry and biophysics at Texas A&M University in College Station, Dr. Pieter Dorrestein, Yu-Liang Yang and Yuquan Xu, all at the University of California, San Diego.

"Microorganisms encode in their genomes the capacity to produce many small molecules that are potential new antibiotics," Straight said. "Because we do not understand the circumstances under which those molecules are produced in the environment, we see only a small fraction of them in the laboratory."

An example is the antibiotic erythromycin, which is often prescribed for people who are allergic to penicillin, Straight said.

"We know that Saccharopolyspora erythraea, the bacteria from which erythromycin is derived, encodes the capacity to produce numerous other small molecules that might be potentially valuable drugs," he said. "Conventional microbial culture and drug discovery techniques uncovered erythromycin. Other potentially useful metabolites may require some unconventional methods for identification."

Historically, medicinal drugs have been discovered serendipitously or by finding the active ingredient in homeopathic remedies, Straight said. For example, the use of blue mold for treating wounds was a folk remedy dates back to the Middle Ages. But scientists didn't isolate and purify the active ingredient, penicillin, until the early 20th century, which marks the beginning of the era of ‘natural product’ medicines originating from microorganisms.

Modern methods of drug discovery rely on screening technologies, knowledge of how infection is controlled and why diseases originate at the molecular level. Some new drugs can be designed accordingly from the ground up, often at significant cost, but serendipitous discovery of what nature has to offer is still a valid approach, he said.

Microorganisms, such as the bacteria that produces erythromycin, have been communicating and battling with each other for millennia using similar small molecules.

"What we learn about how microbes interact and exchange chemicals, and how the presence of one signaling molecule or antibiotic changes the output of potential antibiotics from a neighboring microbe, will guide us to new strategies for boosting the number of potential therapeutic drugs from any given bacteria," Straight said.

The National Institutes of Health recognizes the need to boost development of new drug compounds, he said.

"Globally, there is a shortage of new antibiotics that are being discovered by pharmaceutical companies in the traditional way and an ever-increasing number of multiple drug-resistant pathogens and newly emerging pathogens," Straight said.

The method of Straight, Dorrestein and colleagues employed an instrument called a "matrix-assisted laser desorption/ionization mass spectrometer." The device ionizes part of the sample with a laser beam while a crystalline matrix prevents the bio-molecules from being destroyed.

The plate upon which the bio sample sits is moved during the scan, from which hundreds to thousands of spectra are collected. The data is then processed as a grid and rendered as false-color by computer, then overlaid on a visual image of the sample.

Straight, Dorrestein and colleagues used two common bacteria that are cultured in the laboratory for their tests, Bacillus subtilis and Steptomyces coelicolor, both commonly found in soils. The bacteria were cultured together and their complex chemical interaction recorded using the mass spectrometer.

In competition for resources, the bacteria produced small molecules that alter antibiotic production from patterns present when cultured separately, Straight said. For example, they found that production of an antibiotic that targets Gram-positive organisms (Streptococcus and Staphylococcus are examples of Gram-positive organsims) was inhibited in one bacteria by the other.

The data reveal the chemical complexity of interspecies encounters. Using genetic sequencing, the researchers found that bacteria may dedicate up to 20 percent of their DNA to the bio-synthesis of small molecules in their communications and chemical battles with other microorganisms.

By: Robert Burns, 903-834-6191
Contact(s): Dr. Paul Straight, 979-845-4231, paul_straight@tamu.edu

Robert Burns | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>