Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Imaging Studies Open a Window on How Effective Antibodies Are Formed


Sometimes, in order to understand what’s happening in the immune system, you just have to watch it. By imaging the immune response, researchers have observed how two types of immune cells, T and B cells, interact with one another during a critical period following infection in order to prepare the best antibodies and establish long-lasting protection.

Their surprising finding: T cells and B cells form numerous short-term contacts, each lasting no more than a few minutes, in a dynamic process that is very different from how T cells interact with other cell types. The results were recently published in Science.

shulman BTcells from Newswise on Vimeo.

Connecting. A time-lapse movie shows T cells (red) and B cells (blue) making contact (green) within a mouse germinal center. Interaction between the two types of cells drives the process of diversification, in which B cells are selected based on the effectiveness of the antibodies they produce.

The action takes place in so-called germinal centers, tiny structures within the body’s lymphatic system where B cells learn to make antibodies against specific microbes. Within these sites B cells undergo a process known as diversification in which they experience rapid mutations in the genes that encode antibodies. Only the best B cells — those with the highest “affinities” — are selected to leave the germinal centers and become antibody-secreting cells.

“In the germinal centers, T cells discern between B cells that are making effective antibodies and those that are not — it is because of their scrutiny that the immune system learns to take the correct action to fight off infection,” says study author Ziv Shulman, a postdoc in Michel C. Nussenzweig’s Laboratory of Molecular Immunology. “But nobody had ever observed directly and described the dynamics of this process and little is known about how T cells make their determination.”

Nussenzweig, who is Zanvil A. Cohn and Ralph M. Steinman Professor, along with Shulman, and their colleagues, developed a system in which they could observe the germinal centers directly in live mice under physiological conditions, tagging T cells and B cells with separate fluorescent proteins that allowed them to track the movements of the cells in real time. They also developed an algorithm that could process the resulting videos and keep precise track of the quantity of contacts between the two cell types as well as the duration of each contact.

They found that the amount of antigen being picked up by B cells with high affinity antibodies and presented to T cells dictates the duration of interaction between the cells. In these contacts, the B cells are instructed either to differentiate into antibody secreting cells or to undergo further mutation.

To test whether the cells were indeed communicating with one another, the researchers also visualized the amount of free calcium within the cells. They found an increase in intracellular calcium, an indicator of signaling events triggered during the T and B cells interactions. Furthermore, the dynamics of the calcium signaling they observed suggests that not only are T cells telling B cells what to do, but that the flow of information is bi-directional: T cells are also learning from B cells.

“The transient interactional dynamics allow T cells to continuously seek and find B cells that are presenting high levels of antigen and provide them with preferential help, while still permitting competing B cells to mutate and develop,” Shulman says. “It’s an interactive process, with B cells being directed by T cells and T cells learning from their interactions with B cells.”

The research team says that a better understanding of the processes that take place in germinal centers could lead to new ways to manipulate them in order to more effectively harness the body’s immune system to develop vaccines and fight a variety of diseases.

Contact Information

Zach Veilleux

Zach Veilleux | newswise

Further reports about: Antibodies B cells Nussenzweig T cells action cell types immune immune system interactions

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>