Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Studies Open a Window on How Effective Antibodies Are Formed

26.09.2014

Sometimes, in order to understand what’s happening in the immune system, you just have to watch it. By imaging the immune response, researchers have observed how two types of immune cells, T and B cells, interact with one another during a critical period following infection in order to prepare the best antibodies and establish long-lasting protection.

Their surprising finding: T cells and B cells form numerous short-term contacts, each lasting no more than a few minutes, in a dynamic process that is very different from how T cells interact with other cell types. The results were recently published in Science.


shulman BTcells from Newswise on Vimeo.

Connecting. A time-lapse movie shows T cells (red) and B cells (blue) making contact (green) within a mouse germinal center. Interaction between the two types of cells drives the process of diversification, in which B cells are selected based on the effectiveness of the antibodies they produce.

The action takes place in so-called germinal centers, tiny structures within the body’s lymphatic system where B cells learn to make antibodies against specific microbes. Within these sites B cells undergo a process known as diversification in which they experience rapid mutations in the genes that encode antibodies. Only the best B cells — those with the highest “affinities” — are selected to leave the germinal centers and become antibody-secreting cells.

“In the germinal centers, T cells discern between B cells that are making effective antibodies and those that are not — it is because of their scrutiny that the immune system learns to take the correct action to fight off infection,” says study author Ziv Shulman, a postdoc in Michel C. Nussenzweig’s Laboratory of Molecular Immunology. “But nobody had ever observed directly and described the dynamics of this process and little is known about how T cells make their determination.”

Nussenzweig, who is Zanvil A. Cohn and Ralph M. Steinman Professor, along with Shulman, and their colleagues, developed a system in which they could observe the germinal centers directly in live mice under physiological conditions, tagging T cells and B cells with separate fluorescent proteins that allowed them to track the movements of the cells in real time. They also developed an algorithm that could process the resulting videos and keep precise track of the quantity of contacts between the two cell types as well as the duration of each contact.

They found that the amount of antigen being picked up by B cells with high affinity antibodies and presented to T cells dictates the duration of interaction between the cells. In these contacts, the B cells are instructed either to differentiate into antibody secreting cells or to undergo further mutation.

To test whether the cells were indeed communicating with one another, the researchers also visualized the amount of free calcium within the cells. They found an increase in intracellular calcium, an indicator of signaling events triggered during the T and B cells interactions. Furthermore, the dynamics of the calcium signaling they observed suggests that not only are T cells telling B cells what to do, but that the flow of information is bi-directional: T cells are also learning from B cells.

“The transient interactional dynamics allow T cells to continuously seek and find B cells that are presenting high levels of antigen and provide them with preferential help, while still permitting competing B cells to mutate and develop,” Shulman says. “It’s an interactive process, with B cells being directed by T cells and T cells learning from their interactions with B cells.”

The research team says that a better understanding of the processes that take place in germinal centers could lead to new ways to manipulate them in order to more effectively harness the body’s immune system to develop vaccines and fight a variety of diseases.

Contact Information

Zach Veilleux
newswire@rockefeller.edu
212-327-8982

Zach Veilleux | newswise

Further reports about: Antibodies B cells Nussenzweig T cells action cell types immune immune system interactions

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>