Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Studies Open a Window on How Effective Antibodies Are Formed

26.09.2014

Sometimes, in order to understand what’s happening in the immune system, you just have to watch it. By imaging the immune response, researchers have observed how two types of immune cells, T and B cells, interact with one another during a critical period following infection in order to prepare the best antibodies and establish long-lasting protection.

Their surprising finding: T cells and B cells form numerous short-term contacts, each lasting no more than a few minutes, in a dynamic process that is very different from how T cells interact with other cell types. The results were recently published in Science.


shulman BTcells from Newswise on Vimeo.

Connecting. A time-lapse movie shows T cells (red) and B cells (blue) making contact (green) within a mouse germinal center. Interaction between the two types of cells drives the process of diversification, in which B cells are selected based on the effectiveness of the antibodies they produce.

The action takes place in so-called germinal centers, tiny structures within the body’s lymphatic system where B cells learn to make antibodies against specific microbes. Within these sites B cells undergo a process known as diversification in which they experience rapid mutations in the genes that encode antibodies. Only the best B cells — those with the highest “affinities” — are selected to leave the germinal centers and become antibody-secreting cells.

“In the germinal centers, T cells discern between B cells that are making effective antibodies and those that are not — it is because of their scrutiny that the immune system learns to take the correct action to fight off infection,” says study author Ziv Shulman, a postdoc in Michel C. Nussenzweig’s Laboratory of Molecular Immunology. “But nobody had ever observed directly and described the dynamics of this process and little is known about how T cells make their determination.”

Nussenzweig, who is Zanvil A. Cohn and Ralph M. Steinman Professor, along with Shulman, and their colleagues, developed a system in which they could observe the germinal centers directly in live mice under physiological conditions, tagging T cells and B cells with separate fluorescent proteins that allowed them to track the movements of the cells in real time. They also developed an algorithm that could process the resulting videos and keep precise track of the quantity of contacts between the two cell types as well as the duration of each contact.

They found that the amount of antigen being picked up by B cells with high affinity antibodies and presented to T cells dictates the duration of interaction between the cells. In these contacts, the B cells are instructed either to differentiate into antibody secreting cells or to undergo further mutation.

To test whether the cells were indeed communicating with one another, the researchers also visualized the amount of free calcium within the cells. They found an increase in intracellular calcium, an indicator of signaling events triggered during the T and B cells interactions. Furthermore, the dynamics of the calcium signaling they observed suggests that not only are T cells telling B cells what to do, but that the flow of information is bi-directional: T cells are also learning from B cells.

“The transient interactional dynamics allow T cells to continuously seek and find B cells that are presenting high levels of antigen and provide them with preferential help, while still permitting competing B cells to mutate and develop,” Shulman says. “It’s an interactive process, with B cells being directed by T cells and T cells learning from their interactions with B cells.”

The research team says that a better understanding of the processes that take place in germinal centers could lead to new ways to manipulate them in order to more effectively harness the body’s immune system to develop vaccines and fight a variety of diseases.

Contact Information

Zach Veilleux
newswire@rockefeller.edu
212-327-8982

Zach Veilleux | newswise

Further reports about: Antibodies B cells Nussenzweig T cells action cell types immune immune system interactions

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>