Two-in-One Imaging Agents

Accurate visualization of living systems is key to the correct diagnosis and effective treatment of many diseases, as well as an improved understanding of biological processes. Magnetic resonance imaging (MRI) is a popular non-invasive visualization technique, which requires a possibly toxic contrast agent in the target tissue.

Researchers have recently sought to combine MRI with confocal imaging, one of the most widely used imaging techniques in biology. For this combination to be effective, multimodal imaging agents that can function as MRI contrast agents and luminescent probes are required. Valérie C. Pierre and co-workers at the University of Minnesota report on improved magnetoluminescent systems in the European Journal of Inorganic Chemistry.

Such magnetoluminescent imaging agents consist of three components: a luminescent probe, a contrast agent, and a linker to combine the two. The use of lanthanide complexes as luminescent probes has the advantage of affording long luminescence lifetimes, which makes the system suitable for use in time-gated luminescence spectroscopy. Enhancing the absorption of the lanthanide terbium with a phenanthridine antenna provided an ideal luminescent probe. Magnetic iron oxide nanoparticles, known for their superior longitudinal and especially transverse relaxivities, were employed as the contrast agent, and a polyethylene glycol (PEG) linker was used to coat the luminescent probes onto the magnetic nanoparticles.

In addition to a precise luminescent probe and a contrast agent with excellent relaxivities, these systems are not cytotoxic, as, for example, systems held together by silica matrices. Moreover, the PEG coating is not as thick and is more water-permeable, which results in considerably improved cellular uptake and higher relaxivity.

About the Author
The research group of Professor Valérie C. Pierre at the Department of Chemistry, University of Minnesota, focuses on the role of metal ions in biological systems, especially in the design of biological and medical probes by using the techniques of synthetic and analytical chemistry.
Author: Valérie C. Pierre, University of Minnesota, Minneapolis (USA), http://www.chem.umn.edu/directory/faculty.lasso?serial=2843
Title: Magnetoluminescent Agents for Dual MRI and Time-Gated Fluorescence Imaging

European Journal of Inorganic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejic.201200045

Media Contact

Valérie C. Pierre Wiley-VCH

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors