Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging: A brighter future for cell tracking

16.08.2013
Fluorescent organic nanoparticles operating as cell tracers outperform existing methods for long-term tracking of living cells

A research team in Asia has developed a method for tracking, or etracingf, cells that overcomes the limitations of existing methods. The teamfs fluorescent organic tracers will provide researchers with a non-invasive tool to continually track biological processes for long periods. Applications for the tracers include following carcinogenesis or the progress of interventions such as stem cell therapies.

Bin Liu and Ben Zhong Tang of the A*STAR Institute of Materials Research and Engineering in Singapore and their co-workers developed probes composed of a small number of molecules that aggregate. The aggregation means that the probes have more detectable fluorescence and less leakage than that provided by single-molecule probes. Importantly, rather than eblinkf, the teamfs tracers show steady fluorescence, and do not contain heavy metal ions that can be toxic for living systems.

Compared with their existing inorganic counterparts, the teamfs carbon-based tracers show greater chemical stability and improved biocompatibility with cell biochemistry. They are also more resistant to bleaching by light and do not interfere with normal biochemical processes. Furthermore, the fluorescent signals emitted by the probes do not overlap with the signal naturally emitted by cells.

The tracers developed by Liu, Tang and their colleagues are examples of fquantum dotsf, as they are composed of a small number of molecules with optical characteristics that rely on quantum-mechanical effects. Technically, they are referred to as aggregation-induced emission dots (AIE dots) as they become photostable and highly efficient fluorescent emitters when their component molecules aggregate.

The assembly of the AIE dots began with the synthesis of organic molecules, specifically 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl)fumaronitrile (TPETPAFN), which the researchers then encapsulated in an insoluble lipid-based matrix. Next, the researchers attached small peptide molecules derived from the human immunodeficiency virus (HIV) to exploit the ability of these peptides to promote efficient uptake of AIE dots into living cells.

gOur AIE dots could track isolated human breast cancer cells in vitro for 10 to 12 generations and glioma tumor cells in vivo in mice for 21 days,h says Liu. gThey outperform existing commercial inorganic quantum dots, and open a new avenue in the development of advanced fluorescent probes for following biological processes such as carcinogenesis, stem cell transplantation and other cell-based therapies.h

Future work by Liu, Tang and co-workers will aim to broaden the application of the organic tracers for their use in conjunction with magnetic resonance and nuclear imaging techniques.

The A*STAR]affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information
Li, K., Qin, W., Ding, D., Tomczak, N., Geng, J. et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports 3, 1150 (2013)

ResearchSEA Account for A*STAR | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6722
http://www.researchsea.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>