Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging: A brighter future for cell tracking

16.08.2013
Fluorescent organic nanoparticles operating as cell tracers outperform existing methods for long-term tracking of living cells

A research team in Asia has developed a method for tracking, or etracingf, cells that overcomes the limitations of existing methods. The teamfs fluorescent organic tracers will provide researchers with a non-invasive tool to continually track biological processes for long periods. Applications for the tracers include following carcinogenesis or the progress of interventions such as stem cell therapies.

Bin Liu and Ben Zhong Tang of the A*STAR Institute of Materials Research and Engineering in Singapore and their co-workers developed probes composed of a small number of molecules that aggregate. The aggregation means that the probes have more detectable fluorescence and less leakage than that provided by single-molecule probes. Importantly, rather than eblinkf, the teamfs tracers show steady fluorescence, and do not contain heavy metal ions that can be toxic for living systems.

Compared with their existing inorganic counterparts, the teamfs carbon-based tracers show greater chemical stability and improved biocompatibility with cell biochemistry. They are also more resistant to bleaching by light and do not interfere with normal biochemical processes. Furthermore, the fluorescent signals emitted by the probes do not overlap with the signal naturally emitted by cells.

The tracers developed by Liu, Tang and their colleagues are examples of fquantum dotsf, as they are composed of a small number of molecules with optical characteristics that rely on quantum-mechanical effects. Technically, they are referred to as aggregation-induced emission dots (AIE dots) as they become photostable and highly efficient fluorescent emitters when their component molecules aggregate.

The assembly of the AIE dots began with the synthesis of organic molecules, specifically 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl)fumaronitrile (TPETPAFN), which the researchers then encapsulated in an insoluble lipid-based matrix. Next, the researchers attached small peptide molecules derived from the human immunodeficiency virus (HIV) to exploit the ability of these peptides to promote efficient uptake of AIE dots into living cells.

gOur AIE dots could track isolated human breast cancer cells in vitro for 10 to 12 generations and glioma tumor cells in vivo in mice for 21 days,h says Liu. gThey outperform existing commercial inorganic quantum dots, and open a new avenue in the development of advanced fluorescent probes for following biological processes such as carcinogenesis, stem cell transplantation and other cell-based therapies.h

Future work by Liu, Tang and co-workers will aim to broaden the application of the organic tracers for their use in conjunction with magnetic resonance and nuclear imaging techniques.

The A*STAR]affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information
Li, K., Qin, W., Ding, D., Tomczak, N., Geng, J. et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports 3, 1150 (2013)

ResearchSEA Account for A*STAR | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6722
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>