Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois researchers combine weak chemical forces to strengthen a novel imaging technology

22.05.2014

When Associate Professor of Chemical and Biomolecular Engineering Hyunjoon Kong, graduate student Cartney Smith, and colleagues set out to improve MR imaging (MRI), they turned current contrast agent technology on its head—or rather, they turned it inside out.

 The new compound they designed in collaboration with Roger Adams Professor of Chemistry Steven C. Zimmerman is not only more effective, but also self-assembling. Kong is a member of the Regenerative Biology and Tissue Engineering research theme at the Institute for Genomic Biology.


Image created by Janet Sinn-Hanlon, DesignGroup@VetMed, University of Illinois

When doctors perform an MRI, they administer a contrast agent: a chemical that, when injected into the bloodstream or ingested by the patient just before the MRI, improves the clarity of structures or organs in the resulting image.  One common class of contrast agent, often used for imaging of blood vessels and internal bleeding, contains gadolinium, a rare-earth metal.

Recently, biomedical researchers have found ways to increase the effectiveness of certain contrast agents by associating them with nanoparticles.  The contrast agent being used is packaged inside or bonded to the surface of microscopic particles, which can be designed to target certain regions of the body or prolong the agent’s activity.

Researchers are now exploring the multipurpose use of nanoparticles.  If particles could be loaded with several types of contrast agents or dyes instead of one, or a contrast agent along with another type of diagnostic aid or a medication, doctors could more efficiently test for and treat conditions, and limit the number of injections received by patients.

Just like toddlers sharing a new toy, though, compounds packaged together into a nanoparticle cannot always play well together.  For example, contrast agents may bind to other chemicals, reducing their effectiveness.  In addition, when contrast agents are enclosed inside a nanoparticle, they may not work as well.  Attempts to attach agents to the outer surface of nanoparticles via covalent formation are also problematic, as they can negatively affect the activity of the nanoparticles or the compounds that they carry.

Kong, Smith and colleagues tackled these challenges by using interactions between naturally occurring biomolecules as a guide.  Many types of proteins are strongly attached to cell membranes not by covalent bonds, but by the sum of multiple weaker forces—the attraction of positive and negative charges, and the tendency of non-polar (oil-like) substances to seek each other and avoid water.

The group hypothesized that the same types of forces could be used to attach a contrast agent to the surface of a type of nanoparticle called a liposome, which resembles a little piece of cell membrane in the shape of a tiny bubble.  The researchers designed a “fastener” molecule, DTPA-chitosan-g-C18, that is charged, attracting it to the liposome and binding it to the contrast agent gadolinium. A nonpolar region anchors it to the liposome membrane.

In a series of experiments reported in a recent ACS Nano article (DOI: 10.1021/nn4026228), Kong and others demonstrated that their fastener molecule readily inserted itself into the membrane of pre-made liposomes.  Gadolinium stably associated with the modified nanoparticles in solution, and experiments in animal models showed that these nanoparticles produced clear diagnostic images.

“The strategy works like Velcro on a molecular level to adhere functional units to the outer leaflet of a liposome,” said Smith, who was first author on the study.  “This work represents a new material design strategy that is scalable and easily implemented.  The development of improved contrast agents has the potential to directly impact patients' lives by detecting damaged blood vessels.”

One of the difficulties of working with liposomes is their tendency to degrade inside the body.  When the fastener-loaded liposomes degraded, some of the efficacy of the gadolinium was lost.  In a second study published in Langmuir (DOI: 10.1021/la500412r), Kong and Smith developed a process for chemically cross-linking the components of the nanoparticle that prolonged the life of the nanoparticles in biological conditions.

The work reported in ACS Nano was a collaboration among Kong, Smith, Zimmerman, and others at the University of Illinois, as well as Dr. Sanjay Misra and researchers at the Mayo Clinic.  Both studies were supported by funding from the National Institutes of Health, as well as the University of Illinois Center for Advanced Study.

Written By: 
Claudia Lutz. Photos by L. Brian Stauffer and Janet Sinn-Hanlon.

Nicholas Vasi | Eurek Alert!

Further reports about: Biology MRI activity compounds liposomes nanoparticle nanoparticles particles

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>