Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

iGEM team helps prevent rogue use of synthetic biology

20.07.2010
A team of students from ENSIMAG, an engineering school in Grenoble, France, and Virginia Tech is using bioinformatics to implement federal guidance on synthetic genomics. The students' work will help gene synthesis companies and their customers better detect the possible use of manufactured DNA as harmful agents for bioterrorism.

Synthetic biology offers huge potential for practical applications in medicine, energy production, agriculture, and other areas. For a few thousand dollars, it is now possible to design custom DNA sequences the size of a viral genome, order these sequences from a DNA manufacturer, and receive the DNA in the mail within a few weeks. Experts are concerned, however, about the potential misuse of these emerging technologies and that is where the student's project could play a key role in preventing synthetic biology malpractice.

Jean Peccoud, associate professor at the Virginia Bioinformatics Institute (VBI) at Virginia Tech and leader of Virginia Tech's iGEM initiatives, said, "The students have taken great strides in implementing different possible interpretations of the federal recommendations. Their work characterizes the relationship between the computational cost of the screen and its sensitivity. This independent scientific analysis will identify practical solutions compatible with the operational constraints of commercial operators and refine policies aimed at protecting the nation without undermining its competitiveness."

Algorithms under development assess how similar a specific DNA sequence is to entries in the Centers for Disease Control and Prevention's Select Agent and Toxin List. Keyword lists help to track down matches and allow for continual fine-tuning of the effectiveness of each search. The students are compiling a database of test cases that allows them to estimate the performance of different screening strategies.

Edward You, supervisory special agent in the Federal Bureau of Investigation's (FBI) Weapons of Mass Destruction Directorate, had the opportunity to visit VBI on June 4 and gave a seminar entitled "Biosecurity: The roles and responsibilities of academia and law enforcement". During his visit, he met with some of the students working on the iGEM project. "The students should be commended for tackling a real-life problem directly related to national security needs," said Agent You. By working on this significant project, they are actively participating in the development of responsible practice for this transformative science, which is exactly what the government of this country wants to encourage." He added: "It is very promising to see undergraduate students at iGEM engage their peers in thinking about biosecurity. The groundbreaking work of this international team impacts the safety of people around the globe."

Skip Garner, executive director of VBI, commented: "This project would not have been possible without the support of the MITRE Corporation and Science Applications International Corporation. The sponsorship of these two industrial organizations, widely recognized for their expertise in defense and security, will certainly help transform these scientific results into meaningful outcomes for society."

The final results of the Virginia Tech-ENSIMAG biosecurity team's analyses will be presented in November at the International Genetically Engineered Machines (iGEM) synthetic biology competition organized by the Massachusetts Institute of Technology.

US Department of Health and Human Services voluntary guidelines "Screening Framework Guidance for Synthetic Double-Stranded DNA Providers" November 2009. See http://bit.ly/cwkcpb

Minimizing the Risks of Synthetic DNA: Scientists' Views on the US Governments Guidance on Synthetic Genomics. American Association for the Advancement of Science workshop. See http://bit.ly/98o0kO

The Presidential Commission for the Study of Bioethical Issues http://bit.ly/dys4rs

For a taste of the iGEM competition, please consult the following video: http://bit.ly/9mqOIG

About iGEM

The iGEM competition tests the idea that biological engineering can be performed more reproducibly through the use of standardized parts. iGEM hopes to discover creative new approaches to designing and building engineered biological systems while encouraging the development of collaborations and sharing of information and experiences. For more information, please visit 2010.igem.org

About VBI

The Virginia Bioinformatics Institute (http://www.vbi.vt.edu) at Virginia Tech is a premier bioinformatics, computational biology, and systems biology research facility that uses transdisciplinary approaches to science combining information technology, biology, and medicine. These approaches are used to interpret and apply vast amounts of biological data generated from basic research to some of today's key challenges in the biomedical, environmental, and agricultural sciences. With more than 240 highly trained multidisciplinary, international personnel, research at the institute involves collaboration in diverse disciplines such as mathematics, computer science, biology, plant pathology, biochemistry, systems biology, statistics, economics, synthetic biology, and medicine. The large amounts of data generated by this approach are analyzed and interpreted to create new knowledge that is disseminated to the world's scientific, governmental, and wider communities.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>