Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral infections: Identifying the tell-tale patterns

24.04.2014

LMU researchers have identified the structural features that enable the innate immune system to discriminate between viral and endogenous RNAs in living cells.

When viruses infect cells, they take control of cellular metabolism and hijack cellular resources for the production of viral proteins. This process is dependent on viral RNA molecules that are delivered directly to (in the case of RNA viruses) and/or newly synthesized in the host cell, and provide the blueprints for the fabrication of viral proteins by the cell’s translational apparatus.


Interaction profiles of cellular RNA sensors with RNA strands of the measles virus genome (superimposed on a micrograph showing cells infected with measles virus).

However, cells possess defense systems that are activated by specialized sensors that can distinguish viral RNAs from host RNAs. These proteins, three of which belong to the family of RIG-I like receptors (or RLRs), recognize and bind specifically to foreign RNAs. This in turn alerts the innate immune system, which proceeds to destroy the foreign RNAs, thus preventing the production of new virus particles.

“Based on in-vitro experiments, it is known that RLR proteins bind to certain characteristic patterns in viral RNAs, but it had not been possible to isolate the precise RNA sequences bound by these proteins in living, virus-infected cells,” says Professor Karl-Peter Hopfner of LMU’s Genzentrum.

... more about:
»DNA »LMU »MDA5 »RIG-I »RNA »RNAs »composition »diseases »mechanisms »protein »proteins

Tethering RNA to proteins with UV light

Hopfner, in collaboration with his colleagues Karl-Klaus Conzelmann (LMU), Johannes Söding (LMU) and Adolfo García-Sastre (Mount Sinai Hospital, New York), made use of a clever experimental strategy to get around this problem, which enabled them to purify and characterize ribonucleoprotein complexes containing viral RNAs from virus-infected cells.

The intrinsic stability of the interaction between RLRs and viral RNAs is very low. So the researchers first had to stabilize the complexes in order to isolate them intact. For this purpose, they infected cells with measles virus, and incubated them in the presence of a chemically modified, photo­activatable RNA precursor, which is incorporated into newly synthesized viral RNAs. “Provided that the physical distance between an RNA and its binding protein is short enough, subsequent exposure of such cells to UV light induces the formation of a stable covalent bond between them,” Hopfner explains.

The resulting RNA-protein complexes could then be isolated from the cells and, after detachment of the proteins, the nucleotide sequences of the RNAs could be determined. “This allowed us to determine how RLRs recognize foreign RNAs and how the latter differ from endogenous cellular RNAs,” says Hopfner.

The researchers found that the RLR proteins RIG-I and MDA5 indeed recognize defined elements within viral RNAs in living cells that have been infected by measles virus. Like many other viruses, including the one that causes rabies, the measles virus possesses a single-stranded RNA genome. Unlike DNA viruses, it therefore delivers an RNA template directly into the host cell. However, this molecule must then be transcribed by its associated viral RNA polymerase to generate the mRNAs required for synthesis of viral proteins and propagation of the infection.

Sensors bind to specific regions

“And while RIG-I preferentially binds to certain sequence patterns found at the exposed ends of different viral RNAs both in vitro and in vivo, MDA5 rather surprisingly recognizes not the viral genome itself, but apparently certain regions located within viral mRNAs,” Hopfner explains. Moreover, these regions differ in their base composition from sequences found in other viral RNAs, suggesting that MDA5 relies on these structural differences to discriminate between viral and endogenous RNAs.

Hopfner and his team now plan to investigate the interaction of RLRs with other viral nucleic acids, in order to obtain a clearer picture of the molecular mechanisms that enable these proteins to detect foreign RNAs. This should in turn shed light on why the innate immune system has difficulty in responding to particular viruses, and how RLR-associated autoimmune diseases such as rheumatoid arthritis arise. A better understanding of both of these issues could suggest new approaches to the treatment of both viral infections and autoimmunity.
(PloS Pathogens 2014)       

Luise Dirscherl | Eurek Alert!
Further information:
http://www.en.uni-muenchen.de/news/newsarchiv/2014/hopfner_infektion.html

Further reports about: DNA LMU MDA5 RIG-I RNA RNAs composition diseases mechanisms protein proteins

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>