Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Identified: Switch that Turns On the

A new study in human cells has singled out a molecule that specifically directs immune cells to develop the capability to produce an allergic response. The signaling molecule, called thymic stromal lymphopoietin (TSLP), is key to the development of allergic diseases such as asthma, atopic dermatitis (eczema), and food allergy.

The study team, led by Yong-Jun Liu, M.D., Ph.D., at the University of Texas M.D. Anderson Cancer Center, Houston, focused on dendritic cells, immune cells that initiate the primary immune response. Dendritic cells come into contact with other immune cells known as T cells, causing them to develop into different subsets of T cells, including helper 1 (Th1) and helper 2 (Th2) cells. These T-cell subsets are involved in protective immune responses, but the Th2 cells can also drive an allergic response. Until now, it was not known how dendritic cells induced T cells to become Th2 cells.

The investigators used dendritic cells isolated from the blood of healthy donors and found that the binding of TSLP to these cells activates a distinct set of signaling pathways within the cells. As a result, the dendritic cells produce messenger molecules that act on the T cells, causing them to develop into Th2 cells.

The study identifies TSLP as a switch that causes the development of the allergic response in people and suggests that this molecule may be a potential therapeutic target to treat and prevent allergic diseases.

Dr. Liu and his colleagues are supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The investigators are with the Asthma and Allergic Diseases Cooperative Research Centers program, now in its fourth decade of continuous funding as the cornerstone of NIAID’s asthma and allergy research portfolio.

ARTICLE: K Arima et al. Distinct signal codes generate dendritic cell functional plasticity. Science Signaling. DOI: 10.1126/scisignal.2000567 (2010).

WHO: Marshall Plaut, M.D., Chief, Allergic Mechanisms Section, Asthma, Allergy and Inflammation Branch, NIAID Division of Allergy, Immunology and Transplantation, is available to comment on this article.

CONTACT: To schedule interviews, please contact Julie Wu, 301-402-1663,

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit

Julie Wu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>