Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identified: Switch that Turns On the

21.01.2010
A new study in human cells has singled out a molecule that specifically directs immune cells to develop the capability to produce an allergic response. The signaling molecule, called thymic stromal lymphopoietin (TSLP), is key to the development of allergic diseases such as asthma, atopic dermatitis (eczema), and food allergy.

The study team, led by Yong-Jun Liu, M.D., Ph.D., at the University of Texas M.D. Anderson Cancer Center, Houston, focused on dendritic cells, immune cells that initiate the primary immune response. Dendritic cells come into contact with other immune cells known as T cells, causing them to develop into different subsets of T cells, including helper 1 (Th1) and helper 2 (Th2) cells. These T-cell subsets are involved in protective immune responses, but the Th2 cells can also drive an allergic response. Until now, it was not known how dendritic cells induced T cells to become Th2 cells.

The investigators used dendritic cells isolated from the blood of healthy donors and found that the binding of TSLP to these cells activates a distinct set of signaling pathways within the cells. As a result, the dendritic cells produce messenger molecules that act on the T cells, causing them to develop into Th2 cells.

The study identifies TSLP as a switch that causes the development of the allergic response in people and suggests that this molecule may be a potential therapeutic target to treat and prevent allergic diseases.

Dr. Liu and his colleagues are supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The investigators are with the Asthma and Allergic Diseases Cooperative Research Centers program, now in its fourth decade of continuous funding as the cornerstone of NIAID’s asthma and allergy research portfolio.

ARTICLE: K Arima et al. Distinct signal codes generate dendritic cell functional plasticity. Science Signaling. DOI: 10.1126/scisignal.2000567 (2010).

WHO: Marshall Plaut, M.D., Chief, Allergic Mechanisms Section, Asthma, Allergy and Inflammation Branch, NIAID Division of Allergy, Immunology and Transplantation, is available to comment on this article.

CONTACT: To schedule interviews, please contact Julie Wu, 301-402-1663, niaidnews@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov

Julie Wu | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>