Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Ideal Candidate for Sustainable Catalysis

16.09.2010
Convenient phenol oxidation with iron and hydrogen peroxide

The development of environmentally friendly and efficient catalysts is a major challenge in the field of chemical research, with the focus now being placed on the search for inexpensive metal catalysts.

At the Leibniz Institute for Catalysis (LIKAT) in Rostock, Matthias Beller, the first recipient of the newly launched European Sustainable Chemistry Award, and his group investigate many aspects of applied homogeneous catalysis and some of his latest results on iron catalysis are highlighted on the cover of a recent issue of Chemistry—A European Journal.

In Matthias Beller's own words "catalysis is the science that tries to explain how chemical reactions can be accelerated and controlled. It is one of the key technologies for creating a sustainable chemistry.” Already today catalysis enables the manufacture of a wide range of products; in fact more than 80% of all chemical products produced in industry, be it in the field of pharmaceuticals, agrochemistry or polymer chemistry (to name but a few), involve catalysts at some stage in the process of their manufacture.

Quinones are industrially relevant compounds, as they are used as antioxidants in food, medical treatments, and cosmetics. Up to now one of the main industrial processes for the production of this class of compounds involves the use of stoichiometric amounts of copper. This results in large amounts of copper waste and product contamination. Iron, on the other hand, is an ideal candidate for catalysis, because of its abundant availability and its relative non-toxicity compared to precious metals.

Beller and his co-workers have developed an iron-catalyzed oxidation of phenols and arenes to give 1,4-quinones. This novel selective oxidation reaction takes place under mild conditions (room temperature, alcoholic solvents) with hydrogen peroxide as benign terminal oxidant. It should be noted, that next to air, H2O2 is the most “green”, and waste-avoiding oxidant. Applying the inexpensive and practical catalyst system consisting of iron trichloride hexahydrate, pyridine-2,6-dicarboxylic acid, and benzylamine co-ligands, the industrially important oxidation reactions of 2,3,6-trimethylphenol and 2-methylnaphthalene took place in 79% and 55% yield, respectively. The work represents just one of many steps that Beller's group are taking "en route" towards more sustainable industrial chemical processes.

Author: Matthias Beller, Leibniz-Institut für Katalyse/Universität Rostock (Germany), http://www.catalysis.de/Beller-Matthias.239.0.html

Title: Selective Iron-Catalyzed Oxidation of Phenols and Arenes with Hydrogen Peroxide: Synthesis of Vitamin E Intermediates and Vitamin K3

Chemistry - A European Journal 2010, 16, No. 34, 10300–10303, Permalink to the article: http://dx.doi.org/10.1002/chem.201001429

Matthias Beller | Wiley-VCH
Further information:
http://www.catalysis.de/Beller-Matthias.239.0.html
http://pressroom.chempubsoc.eu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>