Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Ideal Candidate for Sustainable Catalysis

16.09.2010
Convenient phenol oxidation with iron and hydrogen peroxide

The development of environmentally friendly and efficient catalysts is a major challenge in the field of chemical research, with the focus now being placed on the search for inexpensive metal catalysts.

At the Leibniz Institute for Catalysis (LIKAT) in Rostock, Matthias Beller, the first recipient of the newly launched European Sustainable Chemistry Award, and his group investigate many aspects of applied homogeneous catalysis and some of his latest results on iron catalysis are highlighted on the cover of a recent issue of Chemistry—A European Journal.

In Matthias Beller's own words "catalysis is the science that tries to explain how chemical reactions can be accelerated and controlled. It is one of the key technologies for creating a sustainable chemistry.” Already today catalysis enables the manufacture of a wide range of products; in fact more than 80% of all chemical products produced in industry, be it in the field of pharmaceuticals, agrochemistry or polymer chemistry (to name but a few), involve catalysts at some stage in the process of their manufacture.

Quinones are industrially relevant compounds, as they are used as antioxidants in food, medical treatments, and cosmetics. Up to now one of the main industrial processes for the production of this class of compounds involves the use of stoichiometric amounts of copper. This results in large amounts of copper waste and product contamination. Iron, on the other hand, is an ideal candidate for catalysis, because of its abundant availability and its relative non-toxicity compared to precious metals.

Beller and his co-workers have developed an iron-catalyzed oxidation of phenols and arenes to give 1,4-quinones. This novel selective oxidation reaction takes place under mild conditions (room temperature, alcoholic solvents) with hydrogen peroxide as benign terminal oxidant. It should be noted, that next to air, H2O2 is the most “green”, and waste-avoiding oxidant. Applying the inexpensive and practical catalyst system consisting of iron trichloride hexahydrate, pyridine-2,6-dicarboxylic acid, and benzylamine co-ligands, the industrially important oxidation reactions of 2,3,6-trimethylphenol and 2-methylnaphthalene took place in 79% and 55% yield, respectively. The work represents just one of many steps that Beller's group are taking "en route" towards more sustainable industrial chemical processes.

Author: Matthias Beller, Leibniz-Institut für Katalyse/Universität Rostock (Germany), http://www.catalysis.de/Beller-Matthias.239.0.html

Title: Selective Iron-Catalyzed Oxidation of Phenols and Arenes with Hydrogen Peroxide: Synthesis of Vitamin E Intermediates and Vitamin K3

Chemistry - A European Journal 2010, 16, No. 34, 10300–10303, Permalink to the article: http://dx.doi.org/10.1002/chem.201001429

Matthias Beller | Wiley-VCH
Further information:
http://www.catalysis.de/Beller-Matthias.239.0.html
http://pressroom.chempubsoc.eu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>