Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ICRISAT-led team cracks pigeonpea genome

07.11.2011
First legume genome sequence to improve livelihoods of smallholder farmers in the dryland tropics

Hyderabad, India and Shenzhen, China, 06 November 2011 – Once referred to as an "orphan crop" mainly grown by poor farmers, pigeonpea is now set to join the world's league of major food crops with the completion of its genome sequence.

The completed genome sequence of pigeonpea is featured as an advance online publication on 06 November 2011 on the website of the journal Nature Biotechnology, the first ranked journal in the area of biotechnology. The paper provides an overview of the structure and function of the genes that define the pigeonpea plant. It also reveals clues on how the genomic sequence can be useful to crop improvement for sustainable food production particularly in the marginal environments of Asia and sub-Saharan Africa.

Years of genome analysis by a global research partnership led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) based in Hyderabad, India have resulted in the identification of 48,680 pigeonpea genes. A couple of hundreds of these genes were found unique to the crop in terms of drought tolerance, an important trait that can be transferred to other similar crops like soybean, cowpea or common bean that belong to the same family.

In the fight against poverty and hunger amid the threat of climate change, highly nutritious, drought-tolerant crops are the best bets for smallholder farmers in marginal environments to survive and improve their livelihoods.

Pigeonpea, grown on about 5 million hectares in Asia, sub-Saharan Africa and South-Central America, is a very important food legume for millions of the poor in the semi-arid regions of the world. Known as the "poor people's meat" because of its high protein content, it provides a well-balanced diet when accompanied with cereals.

"The mapping of the pigeonpea genome is a breakthrough that could not have come at a better time. Now that the world is faced with hunger and famine particularly in the Horn of Africa brought about by the worst drought of the decades, science-based, sustainable agricultural development solutions are vital in extricating vulnerable dryland communities out of poverty and hunger for good," says ICRISAT Director General William D. Dar.

"Modern crop improvement technologies for smallholder farmer crops such as pigeonpea will be crucial to speed up the development of improved varieties that can provide high yields and improved livelihoods, and at the same time meet the challenges of marginal environments and the threat of climate change and scarce natural resources," adds Dar.

Rajeev Varshney, the lead scientist and coordinator for the pigeonpea genome sequencing project explains how this breakthrough will unlock pigeonpea's potential.

"Having the pigeonpea genome sequence as a reference will significantly speed up and reduce the cost of screening the 'good genes' within the stored pigeonpea seed collections in genebanks like that of ICRISAT. This also means dramatically reducing the cost of developing new improved varieties for farmers," says Varshney.

"At the moment, in general, it can take 6-10 years to breed a new variety. With the use of this genome sequence data, in the future, we could be breeding a new variety in just about 3 years." he adds.

"The pigeonpea collaboration with ICRISAT is a milestone in the partnership between India and China, showcasing the excellent working dynamics and understanding among Indian and Chinese genomics scientists. I hope more partnerships like this will be established in the future, and I believe this will surely bring a significant difference to the whole world," says Professor Huanming Yang, Chairman of BGI-Shenzhen, the world's largest genomics institute and a key partner of this project.

India is home as well as the largest producer of pigeonpea, but crop productivity in the country as well as in sub-Saharan Africa is only less than 1 ton per hectare. An improved understanding of the pigeonpea genome will have a major impact on improved crop productivity, tackling pests and disease constraints in production, and improved resistance to harsh environments and the future variable climate.

Pigeonpea is the first "orphan crop", the first "non-industrial crop" and the second food legume (after soybean) with a completed genome sequence.

It is also the first time that a Consultative Group on International Agricultural Research (CGIAR) supported Center like ICRISAT or any institute located in India has led the genome sequencing of a food crop.

The sequencing was accomplished by a global research partnership, the International Initiative for Pigeonpea Genomics (IIPG), led by ICRISAT with partners such as BGI – Shenzhen (China), US research laboratories like University of Georgia, University of California-Davis, Cold Spring Harbor Laboratory, and National Centre for Genome Resources, and support from the CGIAR Generation Challenge Programme based in Mexico.

For more information, please visit our website: www.icrisat.org or contact r.k.varshney@cgiar.org

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn
http://www.icrisat.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>