Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ICRISAT-led team cracks pigeonpea genome

07.11.2011
First legume genome sequence to improve livelihoods of smallholder farmers in the dryland tropics

Hyderabad, India and Shenzhen, China, 06 November 2011 – Once referred to as an "orphan crop" mainly grown by poor farmers, pigeonpea is now set to join the world's league of major food crops with the completion of its genome sequence.

The completed genome sequence of pigeonpea is featured as an advance online publication on 06 November 2011 on the website of the journal Nature Biotechnology, the first ranked journal in the area of biotechnology. The paper provides an overview of the structure and function of the genes that define the pigeonpea plant. It also reveals clues on how the genomic sequence can be useful to crop improvement for sustainable food production particularly in the marginal environments of Asia and sub-Saharan Africa.

Years of genome analysis by a global research partnership led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) based in Hyderabad, India have resulted in the identification of 48,680 pigeonpea genes. A couple of hundreds of these genes were found unique to the crop in terms of drought tolerance, an important trait that can be transferred to other similar crops like soybean, cowpea or common bean that belong to the same family.

In the fight against poverty and hunger amid the threat of climate change, highly nutritious, drought-tolerant crops are the best bets for smallholder farmers in marginal environments to survive and improve their livelihoods.

Pigeonpea, grown on about 5 million hectares in Asia, sub-Saharan Africa and South-Central America, is a very important food legume for millions of the poor in the semi-arid regions of the world. Known as the "poor people's meat" because of its high protein content, it provides a well-balanced diet when accompanied with cereals.

"The mapping of the pigeonpea genome is a breakthrough that could not have come at a better time. Now that the world is faced with hunger and famine particularly in the Horn of Africa brought about by the worst drought of the decades, science-based, sustainable agricultural development solutions are vital in extricating vulnerable dryland communities out of poverty and hunger for good," says ICRISAT Director General William D. Dar.

"Modern crop improvement technologies for smallholder farmer crops such as pigeonpea will be crucial to speed up the development of improved varieties that can provide high yields and improved livelihoods, and at the same time meet the challenges of marginal environments and the threat of climate change and scarce natural resources," adds Dar.

Rajeev Varshney, the lead scientist and coordinator for the pigeonpea genome sequencing project explains how this breakthrough will unlock pigeonpea's potential.

"Having the pigeonpea genome sequence as a reference will significantly speed up and reduce the cost of screening the 'good genes' within the stored pigeonpea seed collections in genebanks like that of ICRISAT. This also means dramatically reducing the cost of developing new improved varieties for farmers," says Varshney.

"At the moment, in general, it can take 6-10 years to breed a new variety. With the use of this genome sequence data, in the future, we could be breeding a new variety in just about 3 years." he adds.

"The pigeonpea collaboration with ICRISAT is a milestone in the partnership between India and China, showcasing the excellent working dynamics and understanding among Indian and Chinese genomics scientists. I hope more partnerships like this will be established in the future, and I believe this will surely bring a significant difference to the whole world," says Professor Huanming Yang, Chairman of BGI-Shenzhen, the world's largest genomics institute and a key partner of this project.

India is home as well as the largest producer of pigeonpea, but crop productivity in the country as well as in sub-Saharan Africa is only less than 1 ton per hectare. An improved understanding of the pigeonpea genome will have a major impact on improved crop productivity, tackling pests and disease constraints in production, and improved resistance to harsh environments and the future variable climate.

Pigeonpea is the first "orphan crop", the first "non-industrial crop" and the second food legume (after soybean) with a completed genome sequence.

It is also the first time that a Consultative Group on International Agricultural Research (CGIAR) supported Center like ICRISAT or any institute located in India has led the genome sequencing of a food crop.

The sequencing was accomplished by a global research partnership, the International Initiative for Pigeonpea Genomics (IIPG), led by ICRISAT with partners such as BGI – Shenzhen (China), US research laboratories like University of Georgia, University of California-Davis, Cold Spring Harbor Laboratory, and National Centre for Genome Resources, and support from the CGIAR Generation Challenge Programme based in Mexico.

For more information, please visit our website: www.icrisat.org or contact r.k.varshney@cgiar.org

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn
http://www.icrisat.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>