Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who am I – and if so, how many?DNA sequences reveal the true identity of Pelodiscus

23.09.2011
A research team from the Senckenberg Research Institute Dresden has identified many different genetic lineages in the softshell turtle genus Pelodiscus, representing different species.

Traditionally it has been assumed that only the species Pelodiscus sinensis belonged to the genus examined. As a foodstuff, Chinese softshell turtles are the most economically important turtles in the world, with an annual trade volume of many hundreds of millions of specimens. The accompanying study is being published today in the "Journal of Zoological Systematics and Evolutionary Research".


Chinese softshell turtle Pelodiscus sinensis
© Markus Auer (Senckenberg)

It is probably safe to say that none of the 300 million turtles that land on a plate in China each year are particularly interested to know the species to which they belong, but for scientists the discovery of different genetic lineages is of enormous significance. Due to its ease of breeding the turtle is often used as a model organism for embryological and physiological studies, so that a correct identification of the species is of paramount importance, not only in the fields of taxonomy and systematics.

Prof. Uwe Fritz, one of the Dresden authors of the study, confirms this: “While until now these turtles have been used as models in many scientific works, nobody actually knew what species they were. This led to considerable contradictions or non-reproducible results, because different species were used in different publications.”

The Chinese softshell turtle (Pelodiscus sinensis) is a strange looking animal: its shell is – as the name already suggests – soft, the long neck is flexible enough to allow the reptile even to see behind himself, and the trunk-like nose proves to be an excellent snorkel in shallow waters. Around the world there are more than 300 different turtle species, only 30 of which have a soft shell. Instead of an ossified shell, the softshell turtles, with a length of up to 30 centimetres, have a leather-like, flexible skin on their back and belly.

Together with his colleague Heiko Stuckas, Fritz examined the DNA of two 180-year-old softshell turtle shells from the Berlin Natural History Museum (Museum für Naturkunde). In 1834 the greatly shrunken and dried-out samples had served the German zoologist Arend Friedrich August Wiegmann as a basis for describing the species Pelodiscus sinensis.

Tiny pieces of tissue were removed from the shells by the Dresden researchers and parts of the genetic makeup of the turtles were defined with the help of the most up-to-date techniques. What is promising here is above all the analysis of the mitochondrial DNA, as these are present to a much greater degree compared to the DNA of the cell nucleus, thus minimising conservation problem.

Unfortunately, the attempt to gain DNA from the first turtle shell failed completely – the remnants of the animal were simply too old and too dried out. However, the second shell proved to be a great success for the research team! The analysis of the DNA sequences led to the conclusion that the genus Pelodiscus contains at least four and not – as previously believed – one species. For the first time, and with the help of the sequences from the Berlin sample, which is more or less the “original standard” for the species Pelodiscus sinensis, it could be clarified which of the four species is actually the “real” Chinese softshell turtle.

This finding is not only of great importance to the field of science; the turtles themselves can also benefit. At present all species that are collated under Pelodiscus sinensis have been placed on the red list of endangered species by the International Union for Conservation of Nature and Natural Resources (IUCN). However, some of the “newly discovered” species could actually be considered to be even more seriously endangered at present and may therefore enjoy greater protection.

In future, due to the results of the research, the different species will no longer be “lumped together” – at least by scientists – but rather can now be named precisely.

Publication: Stuckas, H. & Fritz, U. Identity of Pelodiscus sinensis revealed by DNA sequences of an approximately 180-year-old-type specimen and a taxonomic reappraisal of Pelodiscus species (Testudines: Trionychidae) (2011), J Zool Syst Evol Res doi: 10.1111/j.1439-0469.2011.00632.x

Contact:

Prof. Dr. Uwe Fritz
Senckenberg Naturhistorische Sammlungen Dresden
Abteilungsleiter Museum für Tierkunde
Königsbrücker Landstr. 159
01109 Dresden
Tel. 0351 795841 4326
Fax 0351 795841 4327
E-Mail: Uwe.Fritz@senckenberg.de
Press Office Senckenberg Gesellschaft für Naturforschung
Judith Jördens
Senckenberganlage 25
63065 Frankfurt/Main
Tel. 069-7542 1434
E-Mail: judith.joerdens@senckenberg.de
The research of life forms in their diversity and their ecosystems, climate research and geology, the search for past life and ultimately the understanding of the entire Earth-Life system – that is what the SENCKENBERG Gesellschaft für Naturforschung works for. Exhibitions and museums are the window to natural science, by which means Senckenberg shares current scientific results with the public and provides an insight into past ages and the diversity of nature.

Judith Jördens | idw
Further information:
http://www.senckenberg.de

Further reports about: Chinese herbs DNA DNA sequence Pelodiscus turtle shell

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>