Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen Storage Gets New Hope

03.09.2009
Economical hydrogen-based vehicles could result from rechargeable ‘chemical fuel tank’

A new method for “recycling” hydrogen-containing fuel materials could open the door to economically viable hydrogen-based vehicles.

In an article appearing today in Angewandte Chemie, Los Alamos National Laboratory and University of Alabama researchers working within the U.S. Department of Energy’s Chemical Hydrogen Storage Center of Excellence describe a significant advance in hydrogen storage science.

Hydrogen is in many ways an ideal fuel for transportation. It is abundant and can be used to run a fuel cell, which is much more efficient than internal combustion engines. Its use in a fuel cell also eliminates the formation of gaseous byproducts that are detrimental to the environment.

For use in transportation, a fuel ideally should be lightweight to maintain overall fuel efficiency and pack a high energy content into a small volume. Unfortunately, under normal conditions, pure hydrogen has a low energy density per unit volume, presenting technical challenges for its use in vehicles capable of travelling 300 miles or more on a single fuel tank—a benchmark target set by DOE.

Consequently, until now, the universe’s lightest element has been considered by some as a lightweight in terms of being a viable transportation fuel.

In order to overcome some of the energy density issues associated with pure hydrogen, work within the Chemical Hydrogen Storage Center of Excellence has focused on using a class of materials known as chemical hydrides. Hydrogen can be released from these materials and potentially used to run a fuel cell. These compounds can be thought of as “chemical fuel tanks” because of their hydrogen storage capacity.

Ammonia borane is an attractive example of a chemical hydride because its hydrogen storage capacity approaches a whopping 20 percent by weight. The chief drawback of ammonia borane, however, has been the lack of energy-efficient methods to reintroduce hydrogen back into the spent fuel once it has been released. In other words, until recently, after hydrogen release, ammonia borane couldn’t be adequately recycled.

Los Alamos researchers have been working with University of Alabama colleagues on developing methods for the efficient recycling of ammonia borane. The research team made a breakthrough when it discovered that a specific form of dehydrogenated fuel, called polyborazylene, could be recycled with relative ease using modest energy input. This development is a significant step toward using ammonia borane as a possible energy carrier for transportation purposes.

“This research represents a breakthrough in the field of hydrogen storage and has significant practical applications,” said Dr. Gene Peterson, leader of the Chemistry Division at Los Alamos. “The chemistry is new and innovative, and the research team is to be commended on this excellent achievement.”

The Chemical Hydrogen Storage Center of Excellence is one of three Center efforts funded by DOE. The other two focus on hydrogen sorption technologies and storage in metal hydrides. The Center of Excellence is a collaboration between Los Alamos, Pacific Northwest National Laboratory, and academic and industrial partners.

Referring to the work described in the Angewandte Chemie article, Los Alamos researcher John Gordon, corresponding author for the paper, stated, “Collaboration encouraged by our Center model was responsible for this breakthrough. At the outset there were myriad potential reagents with which to attempt this chemistry.”

“The predictive calculations carried out by University of Alabama professor Dave Dixon’s group were crucial in guiding the experimental work of Los Alamos postdoctoral researcher Ben Davis,” Gordon added. “The excellent synergy between these two groups clearly enabled this advance.”

The research team currently is working with colleagues at The Dow Chemical Company, another Center partner, to improve overall chemical efficiencies and move toward large-scale implementation of hydrogen-based fuels within the transportation sector.

An electronic version of the article as it appears in issue 37 of Angewandte Chemie International Edition is available online:

http://www3.interscience.wiley.com/cgi-bin/fulltext/122453478/PDFSTART

About Los Alamos National Laboratory (www.lanl.gov)

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and the Washington Division of URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>