Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hydrocarbon Afterglow Reveals Reproductive Cheaters

An ‘honest indicator’ has been discovered by a scientific team at Arizona State University that reveals reproductive cheating. But before you run out to buy an infidelity identification kit, know that it only works for ants.

While it’s well-known that workers in ant colonies typically support one reproductive female – a queen, it turns out that cheating can be a problem, and not just for humans. Cheating is found in all sorts of animal and insect groups, including other highly organized social organisms, such as ants.

Humans cheat on their partners roughly 15-18 percent of the time (according to scientific studies), however, worker ants that stray from acceptable celibate social norms rarely, if ever, are successful. Cheaters are actively weeded out by other workers, and brought back into line, through a process called policing.

How can workers in an ant colony, with hundreds to thousands of sister-workers around them, locate one cheater in an ant hill?

Through fertility hydrocarbons, says Jürgen Liebig, an assistant professor in the School of Life Sciences and member of the Center for Social Dynamic and Complexity in ASU’s College of Liberal Arts and Sciences.

According to research findings published in the journal Current Biology on Jan. 8, hydrocarbons on the outside cuticle of fertile ants form “a particular chemical signature blend.” A cocktail that an ant apparently can’t deny, cover up, or lie about and which brands a cheater much like the red “A” on the bosom of Hester Prynne in Nathaniel Hawthorne’s “The Scarlet Letter.”

Social insects, such as ants, bees and wasps, rely heavily on chemical signals to communicate. While earlier studies indicated that chemical signatures are associated with fertility, it was ASU doctoral student Adrian Smith’s studies with Aphaenogaster cockerelli worker ants that established that these chemical signatures are what allow workers to locate and police cheaters. To do this, Smith painted a non-fertile (non-cheating) worker with a potent pentocosane (hydrocarbon), making her a reproductive mimic. When Smith placed the ant back within her colony, fellow workers sniffed out the “cheater,” biting and attacking her.

“While we knew for some time that fertility status in ants was correlated with particular blends of hydrocarbons on the surface of the cuticle, no one was able to demonstrate that this hydrocarbon blend served as an indicator of fertility status to other nest mates,” says ASU’s Bert Hölldobler, Pulitzer Prize winning author of “The Ants,” coauthored with Harvard Professor Emeritus Edward O. Wilson.

A second set of experiments, confirmed the group’s findings. In an ant colony that lacked a queen, and in which some workers were reproducing, colony members had no aggressive response to the chemically altered, fake fertiles.

“This discovery is strong evidence that these hydrocarbons are ‘honest indicators,’ meaning their expression on the cuticle is intimately coupled with the physiological processes that regulate fertility status,” says Hölldobler, a professor in ASU’s School of Life Sciences.

Fertility is signaled through hydrocarbon signatures on both the eggs and the cuticle of a worker ant. An A. cockerelli worker ant’s egg has the same fertility signal as the queen.

According to Smith, these hydrocarbons serve as a red-flag to other workers, announcing: “This one is capable of laying viable eggs.” Since egg surface hydrocarbons and cuticular hydrocarbons are physiologically linked, a change in one results in a change in the other.

Why are the hydrocarbons then especially suited to prevent reproductive cheating? Research shows that the chemicals don’t lie and worker ants cannot eliminate them to escape detection.

In order to be successful cheats, reproductive workers need to escape being identified. Yet, they still need to assure that their eggs escape detection. Hiding their eggs in plain sight, amongst those of the queen, would be the easiest solution. However, to achieve this, the worker’s eggs would need to express the fertility signal, like those of the queen.

“The dilemma is that if you do not produce the fertility signal on the cuticle you can escape detection, but if you don’t produce it on the egg, it won’t escape detection,” Liebig explains. “This seems to make cheating impossible, since they cannot solve both problems at the same time.”

The idea that ant colonies stabilize their social structure by maintaining a system for punishing miscreants, with a built-in mechanism for reliably identifying individuals as cheaters, is where work such as Smith, Hölldobler and Liebig’s finds application in other systems.

All animal societies share the common problem of individuals exploiting group resources for personal gain at a cost to the group. Smith points out that trying to understand how ant societies deal with this problem “gives us a basis for looking into the mechanisms used by other successful societies.”

“This paper opens a new window in our understanding of the social regulation and evolution of reproductive division of labor, a key trait in eusocial insects,” adds Hölldobler. In addition to this collaborative work, which will be highlighted in the journal Nature, Hölldobler’s nearly half-century study of insect societies has created a proliferation in many new areas of discovery. A book will be released in his honor by Harvard Press in February 2009, “Organization of Insect Societies: From Genome to Sociocomplexity.”

Jürgen Liebig
School of Life Sciences
Arizona State University
480-456-6019 (cell 1)
480-293-4571.(cell 2)
Adrian Smith (first author)
Doctoral Student
School of Life Sciences
Arizona State University
727 505 3547 (cell)

Jürgen Liebig | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>