Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hybrid “NOSH Aspirin” as Possible Anti-Cancer Drug

02.03.2012
Scientists have combined two new “designer” forms of aspirin into a hybrid substance that appears more effective than either of its forebears in controlling the growth of several forms of cancer in laboratory tests.

Their report on the new NOSH-aspirin, so named because it releases nitric oxide (NO) and hydrogen sulfide (H2S), appears in the journal ACS Medicinal Chemistry Letters.

Khosrow Kashfi, Ravinder Kodela and Mitali Chattopadhyay point out that NO and H2S are signaling substances produced in the body that relax blood vessels, reduce inflammation and have a variety of other effects. Scientists previously developed designer aspirin that releases NO in an effort to reduce aspirin’s potential adverse effects in causing bleeding in the gastrointestinal tract. Another designer aspirin that releases H2S was developed which also has anti-inflammatory properties and appears safe to the stomach.

Since NO and H2S are gases with physiological relevance, and Kashfi’s group had previously shown beneficial effects with both NO- and H2S-aspirins, they postulated that a new hybrid that incorporated both of these entities might be even more potent and effective than either one alone. Their hypothesis has proved to be correct.

They found indications that the new hybrid inhibits the growth of breast, colon, pancreas, lung, prostate and some leukemia cancer cells in laboratory tests. Some of the NOSH-aspirins tested were more than 100,000 times more powerful against cancer cell growth than aspirin alone. Promisingly, the group reported that their hybrids did not damage normal cells.

The authors acknowledge funding from the National Cancer Institute.

Michael Woods | Newswise Science News
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>