Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid Molecules Show Promise for Exploring, Treating Alzheimer's

06.11.2009
One of the many mysteries of Alzheimer's disease is how protein-like snippets called amyloid-beta peptides, which clump together to form plaques in the brain, may cause cell death, leading to the disease's devastating symptoms of memory loss and other mental difficulties.

In order to answer that key question and develop new approaches to preventing the damage, scientists must first understand how amyloid-beta forms the telltale clumps.

University of Michigan researchers have developed new molecular tools that can be used to investigate the process. The molecules also hold promise in Alzheimer's disease treatment. The research, led by assistant professor Mi Hee Lim, was published online this week in the Journal of the American Chemical Society.

Though the exact mechanism for amyloid-beta clump formation isn't known, scientists do know that copper and zinc ions are somehow involved, not only in the aggregation process, but apparently also in the resulting injury. Copper, in particular, has been implicated in generating reactive oxygen species, which can cause cell damage.

One way of studying the role of metals in the process is by sopping up the metal ions with molecules called chelators and then seeing what happens when the metal ions are out of the picture. When other scientists have done this they've found that chelators, by removing metals, hamper both amyloid beta clumping and the production of those harmful reactive oxygen species, suggesting that chelators could be useful in treating Alzheimer's disease.

However, most known chelators can't cross the blood-brain barrier, the barricade of cells that separates brain tissue from circulating blood, protecting the brain from harmful substances in the bloodstream. What's more, most chelators aren't precise enough to target only the metal ions in amyloid-beta; they're just as likely to grab and disable metals performing vital roles in other biological systems.

Lim and coworkers used a new strategy to develop "bi-functional" small molecules that not only grab metal ions, but also interact with amyloid-beta.

"The idea is simple," said Lim, who has joint appointments in the Department of Chemistry and the Life Sciences Institute. "We found molecules known for amyloid-beta recognition and then attached metal binding sites to them." In collaboration with Ayyalusamy Ramamoorthy, professor of chemistry and associate professor of biophysics, Lim then used NMR spectroscopy to confirm that the new, hybrid molecules still interacted with amyloid-beta.

In experiments in solutions with or without living cells, the researchers showed that the bi-functional molecules were able to regulate copper-induced amyloid-beta aggregation, not only disrupting the formation of clumps, but also breaking up clumps that already had formed. In fact, their molecules performed better than clioquinol, a clinically-available metal chelator that showed promise in early trials with Alzheimer's patients, but has side effects that limit its long-term use.

"Based on their small size and other properties, we believe our compounds will be able to cross the blood-brain barrier, but we want to confirm that using mouse models," Lim said. The researchers also plan experiments to see if their new chelators are as good at preventing and breaking up amyloid-beta plaques in the brains of mice as they are in solutions and cultured cells.

In addition to Lim and Ramamoorthy, coauthors include postdoctoral fellow Sarmad Hindo, graduate students Allana Mancino and Joseph Braymer, lab technician Yihong Liu, and NMR specialist Subramanian Vivekanandan.

The research was supported by U-M and the National Institutes of Health.

For more information:
Mi Hee Lim---http://www.lsi.umich.edu/facultyresearch/labs/lim and https://www.chem.lsa.umich.edu/chem/faculty/facultyDetail.php?Uniqname=mhlim

Ayyalusamy Ramamoorthy---http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?beginswith=Ramamoorthy

Journal of the American Chemical Society---http://pubs.acs.org/journal/jacsat

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>