Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hybrid Lighting Device

Bacterial photosynthetic reaction center harvests more light thanks to tailored organic antenna

Getting energy from sunlight: Plants have it down; humans have not quite got the knack for it. Hybrid systems made from natural and synthetic components could open new routes for harvesting solar energy.

Italian researchers have now introduced an approach to this type of system. As described in the journal Angewandte Chemie, they have combined the photochemical core of a bacterial photosynthetic system with an organic dye that acts as an “antenna”, significantly improving the capture of light.

In all organisms fuelled by photosynthesis, the functional organization of the photosynthetic apparatus is the same: pigment-protein complexes capture the light like a radio antenna catching radio waves and conduct it to a central photochemical core, the reaction center. Here the energy is converted to an electron-hole pair: a negatively charged electron is separated from its molecular core, leaving behind a positively charged “hole”.

This charge-separated state must be maintained long enough to be used. The organism uses this to drive its metabolism. In technological applications, charge separation may be used to drive a redox reaction like the splitting of water into hydrogen and oxygen.

Nature has optimal control over these steps. Synthetic systems that efficiently capture light and use the energy to achieve charge separation have also been developed; however the lifetime of the charge separation is barely in the millisecond range. This is not enough to allow the energy to be drawn off efficiently. An interesting approach to solving this problem is to make hybrid systems that combine a tailored synthetic antenna with a natural “light converter”. Previously, synthetic antennas have been made from quantum dots, nanoscopic structures made of semiconductors.

Instead, researchers led by Gianluca M. Farinola and Massimo Trotta have elected to use a tailored organic dye molecule as their antenna. These have several advantages over inorganic structures: The molecular diversity of organic compounds allows for very fine tuning of the spectroscopic and electronic properties of the antenna. At the same time, the molecular form and flexibility can be controlled so that the antenna has practically no effect on the reaction center and its function, unlike quantum dots. An organic antenna can also be attached to nearly any desired location on the reaction center.

The Italian researchers combined their organic antenna with the extensively researched reaction center of the purple bacterium Rhodobacter sphaeroides R-26. They demonstrated that the antenna does not disrupt the function of the natural light converted; instead it improves its activity in a range of wavelengths not efficiently absorbed by the purely biological system.

About the Author
Dr Massimo Trotta is a Resercher at Institute of Physical Chemistry of the Italian National Research Council. He has been working on bacterial photosynthesis and its application in energy conversion and in environmental related issues for over 20 years. He has been chair of the COST Action Molecular machinery for ion translocation across the membrane.

Author: Massimo Trotta, Istituto per i Processi Chimico Fisici Nazionale delle Ricerche, Bari (Italy),
Title: Enhancing the Light Harvesting Capability of a Photosynthetic Reaction Center by a Tailored Molecular Fluorophore

Angewandte Chemie International Edition 2012, 51, No. 44, 11019–11023, Permalink to the article:

Dr Massimo Trotta | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>