Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hutchinson Center and TGen scientists discover potential 'break through' in pancreatic cancer

21.03.2012
New study shows how to defeat chemotherapy barrier in nation's 4th deadliest cancer

Scientists at Fred Hutchinson Cancer Research Center and the Translational Genomics Research Institute (TGen) have discovered a literal 'break through' in pancreatic cancer.

A unique biological barrier that pancreatic cancer tumors build around themselves have made them especially resistant to chemotherapy treatments, according to the Hutchinson Center/TGen study published today in the highly-regarded journal Cancer Cell.

Pre-clinical experiments show that a combination of drugs could break down the barrier surrounding these tumors, allowing chemotherapy drugs to freely spread and permeate throughout the cancerous tissue, according to the study.

"Discovering how to break through this barrier is a significant finding that could eventually enable therapeutic compounds to be much more effective in combating this deadly cancer and helping patients," said Dr. Daniel Von Hoff, M.D., TGen's Physician-In-Chief and one of the authors of the study, as well as one of the world's leading authorities on pancreatic cancer.

"The barrier surrounding pancreatic ductal adenocarcinoma has prevented therapeutics from reaching and effectively acting on this cancer," said Dr. Von Hoff, who also is head of TGen's Clinical Translational Research Division.

This research is now being tested for the first time in patients in the U.S. and Europe, including those at Seattle Cancer Care Alliance, the Hutchinson Center's patient treatment arm. These tests have the potential to significantly increase the length of survival in patients with pancreatic cancer, which is notoriously fast-spreading and among the most lethal of all cancers, the study says.

Dr. Sunil Hingorani, M.D., Ph.D., the study's senior author and an associate member of the Hutchinson Center's Clinical Research and Public Health Sciences divisions, developed the study's laboratory model. By combining gemcitabine — the current standard chemotherapy used to treat patients' pancreatic ductal adenocarcinomas — with an enzyme called PEGPH20, scientists showed that the tumor barrier could be broken down and the drug could more easily reach the cancerous tissue.

"This represents the largest survival increase we've seen in any of the studies done in a preclinical model, and it rivals the very best results reported in humans," Dr. Hingorani said. "Being able to deliver the drugs effectively into the tumor resulted in improved survival as well as the realization that pancreas cancer may be more sensitive to conventional chemotherapy than we previously thought."

Unlike most solid tumors, pancreas tumors use a two-pronged defense to keep small molecules, such as those contained in chemotherapy, from entering: a vastly reduced blood supply and the creation of a strong fibro-inflammatory response. The latter includes the production of fibroblasts, immune cells and endothelial cells that become embedded within a dense and complex extracellular matrix throughout the tumor. One major component of this matrix is a substance called hyaluronan, or hyaluronic acid (HA). HA is a glycosaminoglycan, a complex sugar that occurs naturally in the body and is secreted at extremely high levels by pancreatic cancer cells.

Dr. Hingorani, Dr. Von Hoff and their colleagues discovered that the fibro-inflammatory response creates unusually high interstitial fluid pressures that collapse the tumor's blood vessels. This in turn prevents chemotherapy agents from entering the tumors. The researchers found that HA is the main biological cause of the elevated pressures that leads to blood vessel collapse.

Administering the enzyme/gemcitabine combination degrades HA in the tumor barrier and results in rapid reduction of the interstitial fluid pressure. This in turn opens the blood vessels and permits high concentrations of chemotherapy to reach the tumor.

Details about the open clinical trial can be found at: http://clinicaltrials.gov/show/NCT01453153.

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related death in the United States. Overall five-year survival is less than 5 percent with a median survival of four to six months.

Grants from the National Cancer Institute, the Giles W. and Elise G. Mead Foundation, Safeway and several individuals supported the research. Collaborators at the University of Washington also contributed to the study.

About Fred Hutchinson Cancer Research Center

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit http://www.fhcrc.org.

Press Contact:

Dean Forbes
206-667-2896
dforbes@fhcrc.org
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: http://www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>