Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hutchinson Center and TGen scientists discover potential 'break through' in pancreatic cancer

21.03.2012
New study shows how to defeat chemotherapy barrier in nation's 4th deadliest cancer

Scientists at Fred Hutchinson Cancer Research Center and the Translational Genomics Research Institute (TGen) have discovered a literal 'break through' in pancreatic cancer.

A unique biological barrier that pancreatic cancer tumors build around themselves have made them especially resistant to chemotherapy treatments, according to the Hutchinson Center/TGen study published today in the highly-regarded journal Cancer Cell.

Pre-clinical experiments show that a combination of drugs could break down the barrier surrounding these tumors, allowing chemotherapy drugs to freely spread and permeate throughout the cancerous tissue, according to the study.

"Discovering how to break through this barrier is a significant finding that could eventually enable therapeutic compounds to be much more effective in combating this deadly cancer and helping patients," said Dr. Daniel Von Hoff, M.D., TGen's Physician-In-Chief and one of the authors of the study, as well as one of the world's leading authorities on pancreatic cancer.

"The barrier surrounding pancreatic ductal adenocarcinoma has prevented therapeutics from reaching and effectively acting on this cancer," said Dr. Von Hoff, who also is head of TGen's Clinical Translational Research Division.

This research is now being tested for the first time in patients in the U.S. and Europe, including those at Seattle Cancer Care Alliance, the Hutchinson Center's patient treatment arm. These tests have the potential to significantly increase the length of survival in patients with pancreatic cancer, which is notoriously fast-spreading and among the most lethal of all cancers, the study says.

Dr. Sunil Hingorani, M.D., Ph.D., the study's senior author and an associate member of the Hutchinson Center's Clinical Research and Public Health Sciences divisions, developed the study's laboratory model. By combining gemcitabine — the current standard chemotherapy used to treat patients' pancreatic ductal adenocarcinomas — with an enzyme called PEGPH20, scientists showed that the tumor barrier could be broken down and the drug could more easily reach the cancerous tissue.

"This represents the largest survival increase we've seen in any of the studies done in a preclinical model, and it rivals the very best results reported in humans," Dr. Hingorani said. "Being able to deliver the drugs effectively into the tumor resulted in improved survival as well as the realization that pancreas cancer may be more sensitive to conventional chemotherapy than we previously thought."

Unlike most solid tumors, pancreas tumors use a two-pronged defense to keep small molecules, such as those contained in chemotherapy, from entering: a vastly reduced blood supply and the creation of a strong fibro-inflammatory response. The latter includes the production of fibroblasts, immune cells and endothelial cells that become embedded within a dense and complex extracellular matrix throughout the tumor. One major component of this matrix is a substance called hyaluronan, or hyaluronic acid (HA). HA is a glycosaminoglycan, a complex sugar that occurs naturally in the body and is secreted at extremely high levels by pancreatic cancer cells.

Dr. Hingorani, Dr. Von Hoff and their colleagues discovered that the fibro-inflammatory response creates unusually high interstitial fluid pressures that collapse the tumor's blood vessels. This in turn prevents chemotherapy agents from entering the tumors. The researchers found that HA is the main biological cause of the elevated pressures that leads to blood vessel collapse.

Administering the enzyme/gemcitabine combination degrades HA in the tumor barrier and results in rapid reduction of the interstitial fluid pressure. This in turn opens the blood vessels and permits high concentrations of chemotherapy to reach the tumor.

Details about the open clinical trial can be found at: http://clinicaltrials.gov/show/NCT01453153.

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related death in the United States. Overall five-year survival is less than 5 percent with a median survival of four to six months.

Grants from the National Cancer Institute, the Giles W. and Elise G. Mead Foundation, Safeway and several individuals supported the research. Collaborators at the University of Washington also contributed to the study.

About Fred Hutchinson Cancer Research Center

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit http://www.fhcrc.org.

Press Contact:

Dean Forbes
206-667-2896
dforbes@fhcrc.org
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: http://www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>