Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huntington's disease deciphered

16.06.2009
Researchers at the University of Illinois at Chicago College of Medicine have discovered how the mutated huntingtin gene acts on the nervous system to create the devastation of Huntington's disease. The report of their findings is available in Nature Neuroscience online.

The researchers were able to show that the mutated huntingtin gene activates a particular enzyme, called JNK3, which is expressed only in neurons and, further, to show what effect activation of that enzyme has on neuron function.

Huntington's disease is an adult onset neurodegenerative disease marked by progressive mental and physical deterioration. It has been known for more than a decade that everyone who develops the disease has mutations in a particular gene, called huntingtin, according to Scott Brady, professor and head of anatomy and cell biology at the UIC College of Medicine.

"There are several puzzling aspects of this disease," said Brady, who is co-principal investigator on the study. "First, the mutation is there from day one. How is it that people are born with a perfectly functioning nervous system, despite the mutation, but as they grow up into their 30s and 40s they start to develop these debilitating symptoms? We need to understand why the protein is bad at 40 but it wasn't bad at 4."

The second problem, according to Brady, is that the gene is expressed not just in the nervous system but in other parts of the body. However, the only part of the body that is affected is the nervous system. Why are neurons being affected?

Brady, Gerardo Morfini, assistant professor of anatomy and cell biology at UIC and co-principal investigator of the study, and their colleagues began looking for a mechanism that could explain all the pieces of the puzzle. They found that at extremely low concentrations, huntingtin was a potent inhibitor of axonal transport, the system within the neuron that shuttles proteins from the cell body where they are synthesized to the synaptic terminals where they are needed.

A neuron's critical role in making connections may require it to make the cellular trunk, called an axon, between the cell body and the synaptic terminal to be very long. Some cells have axons that reach half the body's length -- for a tall person, a meter or more. But even in the brain, axonal projections are very long compared to other cells. In addition to the challenge of distance, neurons are very complex cells with many specialized areas necessary to carry out synaptic connections, requiring a robust transport system.

"Inhibition of neuronal transport is enough to explain what is happening in Huntington's," said Brady. Loss of delivery of materials to the terminals results in loss of transmission of signals from the neuron. Loss of signal transmission causes the neurons to begin to die back, leading to reduced transmissions, more dying back and eventual neuronal cell death.

This mechanism also explains the late onset of the disease, Brady said. Activation of JNK3 reduces transport but does not eliminate it. Young neurons have a robust transport system, but transport gradually declines with age.

"If you take a hit when you're very young, you still are making more and transporting more proteins in each neuron than you need," Brady said. "But as you get older and older, the neuron produces and transports less. Each hit diminishes the system further. Eventually, the neuron falls below the threshold needed to maintain cell health."

Brady's group has also linked this pattern of progressive neurodegeneration -- marked by a loss of signaling between neurons, a slow dying back of neurons, and eventual neuron death -- to damage to the transport system in several other hereditary adult-onset neurodegenerative diseases and to Alzheimer's disease.

"There is a common theme and a common Achilles heel of the neuron that underlies all these diseases," Brady said. "We've invented a word, dysferopathy, (from the Greek 'fero', to carry or transport) for these adult-onset neurodegenerative diseases. All have disruption of the axonal transport system in common."

The study was supported by grants from the Huntington's Disease Society of America, the National Institutes of Health, the Muscular Dystrophy Association, the ALS Association and a Marine Biological Laboratory Summer Fellowship.

Other authors on the study are Yi-Mei You, Sarah Pollema, Agnieszka Kaminska, and Gustavo Pigino of UIC; Katherine Liu of the Marine Biological Laboratory at Woods Hole, Mass.; Katsuji Yoshioka of Kanazawa University, Japan; Benny Björkblom and Eleanor T. Coffey of the Ǻbo Akademi and Turku University in Finland; Carolina Bagnato and David Han of the University of Connecticut Health Center; and Chun-Fang Huang and Gary Banker of the Oregon Health & Science University.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>