Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hunting down the trigger for Parkinson’s: failing dopamine pump damages brain cells

16.06.2014

A study group at the Medical University of Vienna's Centre for Brain Research has investigated the function of an intracellular dopamine pump in Parkinson’s patients compared to a healthy test group.

It turned out that this pump is less effective at pumping out dopamine and storing it in the brain cells of Parkinson's sufferers. If dopamine is not stored correctly, however, it can cause self-destruction of the affected nerve cells.


In the brain, dopamine mediates the exchange of information between different neurons and, to help it do this, it is continuously reformed at the contact points between the corresponding nerve cells. It is stored in structures known as vesicles (intracellular bubbles) and it is released when required. In people with Parkinson’s disease, the death of these nerve cells causes a lack of dopamine, and this in turn causes the familiar movement problems such as motor retardation, stiffness of the muscles and tremors.

More than 50 years ago, in the Institute of Pharmacology at the University of Vienna (now the MedUni Vienna), Herbert Ehringer and Oleh Hornykiewicz discovered that Parkinson’s disease is caused by a lack of dopamine in certain regions of the brain. This discovery enabled Hornykiewicz to introduce the amino acid L-DOPA into the treatment of Parkinson’s to substitute the dopamine and make the symptoms of the condition manageable for years.

The reasons for the death of nerve cells in Parkinson's disease are not yet fully understood, however, which is why it is still not possible to prevent the disease from developing. Nevertheless, dopamine itself, if it is not stored correctly in vesicles, can cause self-destruction of the affected nerve cells.

Now, a further step forward has been taken in the research into the causes of this disease: a study at the MedUni Vienna’s Centre for Brain Research, led by Christian Pifl and the now 87-year-old Oleh Hornykiewicz, compared the brains of deceased Parkinson's patients with those of a neurologically healthy control group. For the first time, it was possible to prepare the dopamine-storing vesicles from the brains so that their ability to store dopamine by pumping it in could be measured in quantitative terms.

It turned out that the pumps in the vesicles of Parkinson’s sufferers pumped the dopamine out less efficiently. “This pump deficiency and the associated reduction in dopamine storage capacity of the Parkinson’s vesicles could lead to dopamine collecting in the nerve cells, developing its toxic effect and destroying the nerve cells," explains Christian Pifl.  

http://www.meduniwien.ac.at

Journal of Neuroscience
Christian Pifl, Alex Rajput, Harald Reither, Javier Blesa, Carmen Cavada, José A. Obeso, Ali H. Rajput, Oleh Hornykiewicz – Is Parkinson’s disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and non-human primate striatum. Journal of Neuroscience

Johannes Angerer | AlphaGalileo

Further reports about: Neuroscience Parkinson’s dopamine movement pump structures vesicles

More articles from Life Sciences:

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Perfect imperfection
03.05.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>