Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hunting for Autism's Chemical Clues

11.07.2012
On her laptop computer one recent afternoon, University at Buffalo researcher Charmion Cruickshank calls up a mass spectrometry readout showing the breakdown of chemicals in the urine of a child with autism.

She has similar information for nine other children -- four with the disorder and five without -- and she has spent the past few years sifting through this puzzle of data for autism's chemical clues.

The goal of the research, led by UB chemist Troy Wood, is to pinpoint an array of molecular compounds that appear in distinct amounts in the urine of children with autism. If the team is successful, a biological test for diagnosing the disorder -- so far elusive -- could be within reach.

Such a test would provide clinicians with a more objective way of identifying autism, which is currently diagnosed by observing behavior.

"We're trying to understand, at the molecular level, how autism is occurring and manifesting itself," said Wood, an associate professor of chemistry. "A biological test for autism could assist with early diagnosis, which is critical because if you can identify children with autism early in life, the outcome is going to be better."

Pilot studies in Wood's laboratory have uncovered what may be a number of distinctive chemical traits in the urine of children with autism.

For example, compounds that appeared at depleted levels include the reduced form of glutathione -- a finding that Cruickshank, a UB PhD graduate, outlined in the dissertation she defended this May. Levels of stercobilin, another substance, also seemed abnormally low.

Deficiencies of both of these compounds are an indicator of oxidative stress, which some researchers believe plays a role in autism, Wood said.

To verify these preliminary results, which have not been published in a journal, Wood is hoping to complete a larger, validation study. Such a study would analyze 75 to 100 urine samples from children with autism, and an equal number of urine samples from children in a control group.

Besides stercobilin and reduced glutathione, Wood and his team have also identified a handful of other compounds in the urine that may be correlated with autism. He noted that for a biological test to be reliable, scientists will need to identify not just one or two compounds that are biomarkers for autism, but several.

Cruickshank, now a postdoctoral researcher at National Jewish Health in Denver, Colo., and Zachary Fine, a former UB student who helped process urine samples in Wood's lab, said they hoped their work would eventually lead, one day, to real benefits for children with autism. Both researchers have friends who either had the disorder themselves or had family members with autism.

"The hope is to be able to eliminate some of the subjectiveness in diagnosing autism, and to get a better understanding of what's actually causing it," said Fine, who graduated in May with a bachelor of science in chemistry and is now a quality assurance analyst at Johnson & Johnson. "They're saying that more children have autism today than before, but it's not clear if that's because they're understanding the disease better, or if people are just diagnosing it more."

The research in Wood's laboratory on autism biomarkers is conducted, in part, with a Fourier transform ion cyclotron resonance mass spectrometer that was purchased in 2011 using a National Institutes of Health stimulus grant.

Charlotte Hsu | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>