Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hungry cells on the move

07.09.2016

Researchers discover a signaling pathway that enables cells to reach their destinations through repulsion

When cells grow and divide, they come into contact with other cells. This happens not only during development and regeneration and after injury, but also during cancer growth and the formation of metastases.


Ephrins (blue) and Ephs (red) form complexes (yellow) at cell contact points. To enable the cells to separate from each other, they are pulled into one of the cells with the help of the signalling proteins Tiam and Rac.

Credit: MPI of Neurobiology/Gaitanos

When cells come into contact with each other in this way, information is exchanged by proteins, which are embedded in the cell membranes and form tight lock-and-key complexes with each other. These connections must be severed if the cells want to transmit a repulsion signal. It appears that the fastest way to do this is for the cells to engulf the protein complex from the membrane of the neighbouring cell. Scientists from the Max Planck Institute of Neurobiology in Martinsried have now identified the molecules that control this process.

Development is an extremely rapid process. Increasing numbers of cells are formed which must find their correct position in the body, clearly demarcate themselves from each other to form tissue, or - as is the case in the nervous system - establish contact with partner cells in remote locations. "The crowding is accompanied by orderly pushing and shoving," says Rüdiger Klein, whose Department at the Max Planck Institute of Neurobiology studies how cells get their bearings.

"A popular way for one cell to show another which direction to take is for it to repel the other cell following brief contact." According to the scientists' observations, the cells do not exactly treat each other with kid gloves and even go so far as to engulf entire pieces from the membranes of other cells.

When cells come into contact with each other, ephrin and Eph receptors are often involved. These proteins are located on the surface of almost all cells. When two cells meet, their ephrin and Eph receptors connect to form tight ephrin/Eph complexes. These complexes then trigger the repulsion process through intracellular signalling pathways.

"This is where the problem arises, as it appears that the cells then want to separate as quickly as possible - however, the two cells are attached to each other through the tight ephrin/Eph complex," explains Klein. So the cells do something else: they extend their own cell membranes so far over the individual complexes that the complex and the surrounding membrane detaches from the neighbouring cell and is fully incorporated into the cell.

The Max Planck researchers discovered as early as 2003 that cells can use this process, known as endocytosis, to separate from each other. Thanks to progress made in molecular biology since then, they have now managed to show how the process is controlled in detail.

With the help of a series of genetic modifications and the targeted deactivation of individual cell components, the scientists succeeded in demonstrating that Tiam signalling proteins are activated through the formation of the ephrin/Eph complex.

As a result, Rac enzymes become active which, in turn, cause the engulfment of the ephrin/Eph complexes by the cell membrane through the local restructuring of the actin cytoskeleton. If one of these components is missing, this engulfing process through endocytosis is blocked and the cells do not repel each other but remain attached.

The clarification of this signalling pathway is important, as it provides a better understanding of the development of neuronal networks and other organ systems. The findings are also of considerable interest for cancer research: thanks to their ability to control cell repulsion, ephrin and Eph receptors play a major role in the penetration of tissue by cancer cells and in the formation of metastases. For this reason, receptors and their connection partners are the focus of current medical research. Better understanding of this signalling pathway, through which cell repulsion is controlled, could enable the development of new drugs to combat cancer.

###

Original publication: Thomas N. Gaitanos, Jorg Koerner, Rüdiger Klein
Tiam/Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion.
Journal of Cell Biology; 5 September, 2016

Media Contact

Dr. Stefanie Merker
merker@neuro.mpg.de
49-898-578-3514

 @maxplanckpress

http://www.mpg.de 

Dr. Stefanie Merker | EurekAlert!

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>