Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hummingbirds catch flying bugs with the help of fast-closing beaks

20.07.2011
Biologists and engineers team up to unlock the secret to the hummingbird's 'snap-buckling' beak

The shape of a hummingbird's beak allows for a "controlled elastic snap" that allows it to snatch up flying insects in a mere fraction of a second —with greater speed and power than could be achieved by jaw muscles alone, says a new study in a forthcoming issue of Journal of Theoretical Biology.

Hummingbird beaks are built to feed on flowers, but hummingbirds can't live on nectar alone. To get enough protein and nutrients they need to eat small insects too, said co-author Gregor Yanega of the National Evolutionary Synthesis Center in Durham, North Carolina.

"Hummingbirds need the equivalent of 300 fruit flies a day to survive," Yanega said.

But how can a long, slender bill so well suited for sipping nectar also be good at catching insects, and often in mid-air?

In 2004 in the journal Nature, Yanega and University of Connecticut biologist Margaret Rubega reported that part of the answer lies in the hummingbird's flexible bill. Using high speed video of three hummingbird species catching fruit flies, the researchers found that the hummingbird's bendy lower beak flexes by as much as 25 degrees when it opens, while also widening at the base to create a larger surface for catching insects.

While watching the ultrafast videos, however, Yanega also noticed something else: As soon as the hummingbird's beak is maximally bent, it suddenly springs back to its original position and snaps closed.

"Their beaks snap shut in less than a hundredth of a second," he explained. "It's fast."

Yanega teamed up with engineers Matthew Smith and Andy Ruina of Cornell University to unlock the secret to the hummingbird beak's sudden snap. Armed with data on the length, thickness, and density of the bones and muscles in the hummingbird's head, the researchers developed a mathematical model of the elastic energy in the beak from the time it flexes open to the time it snaps shut.

Part of the trick lies in how the hummingbird's beak is built, the authors said. While other insect-eating birds such as swifts and nighthawks have a cartilaginous hinge near the base of their beaks, hummingbird beaks are solid bone.

"They're also incredibly thin," Yanega said. "This makes their lower beaks stiff yet springy, like a diving board."

The researchers' mathematical model revealed that the downward bend of the hummingbird's lower beak puts stress on the bone, storing elastic energy which eventually powers its sudden snap closure, explained first author Matthew Smith, now at the Air Force Research Laboratory at Wright-Patterson Air Force Base.

"The extra speed likely leads to greater success in catching insects," Smith said.

Known as snap-buckling, the phenomenon is similar to the opening and closing of a snap hair clip, Smith said. "Or, remember those little pop-up toys that consist of a half sphere made of rubber? When you invert one and set it on a hard surface it will eventually snap back into place and jump off the surface," Smith added.

Snap-buckling has also been observed in plants and insects. "The classic example of snap-buckling in plants is the venus flytrap, which uses this trick to catch insects," Smith said. "Cicadas, too, have tiny ribs which they snap-buckle to produce their distinctive song."

This study marks the first time snap-buckling has been observed in vertebrates, the authors added.

The study will appear in the August 7 issue of Journal of Theoretical Biology, and is also available online at doi:10.1016/j.jtbi.2011.05.007.

CITATION: Smith, M., G. Yanega, and A. Ruina. (2011). "Elastic instability model of rapid beak closure in hummingbirds." Journal of Theoretical Biology 282: 41-51.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>