Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hummingbirds catch flying bugs with the help of fast-closing beaks

20.07.2011
Biologists and engineers team up to unlock the secret to the hummingbird's 'snap-buckling' beak

The shape of a hummingbird's beak allows for a "controlled elastic snap" that allows it to snatch up flying insects in a mere fraction of a second —with greater speed and power than could be achieved by jaw muscles alone, says a new study in a forthcoming issue of Journal of Theoretical Biology.

Hummingbird beaks are built to feed on flowers, but hummingbirds can't live on nectar alone. To get enough protein and nutrients they need to eat small insects too, said co-author Gregor Yanega of the National Evolutionary Synthesis Center in Durham, North Carolina.

"Hummingbirds need the equivalent of 300 fruit flies a day to survive," Yanega said.

But how can a long, slender bill so well suited for sipping nectar also be good at catching insects, and often in mid-air?

In 2004 in the journal Nature, Yanega and University of Connecticut biologist Margaret Rubega reported that part of the answer lies in the hummingbird's flexible bill. Using high speed video of three hummingbird species catching fruit flies, the researchers found that the hummingbird's bendy lower beak flexes by as much as 25 degrees when it opens, while also widening at the base to create a larger surface for catching insects.

While watching the ultrafast videos, however, Yanega also noticed something else: As soon as the hummingbird's beak is maximally bent, it suddenly springs back to its original position and snaps closed.

"Their beaks snap shut in less than a hundredth of a second," he explained. "It's fast."

Yanega teamed up with engineers Matthew Smith and Andy Ruina of Cornell University to unlock the secret to the hummingbird beak's sudden snap. Armed with data on the length, thickness, and density of the bones and muscles in the hummingbird's head, the researchers developed a mathematical model of the elastic energy in the beak from the time it flexes open to the time it snaps shut.

Part of the trick lies in how the hummingbird's beak is built, the authors said. While other insect-eating birds such as swifts and nighthawks have a cartilaginous hinge near the base of their beaks, hummingbird beaks are solid bone.

"They're also incredibly thin," Yanega said. "This makes their lower beaks stiff yet springy, like a diving board."

The researchers' mathematical model revealed that the downward bend of the hummingbird's lower beak puts stress on the bone, storing elastic energy which eventually powers its sudden snap closure, explained first author Matthew Smith, now at the Air Force Research Laboratory at Wright-Patterson Air Force Base.

"The extra speed likely leads to greater success in catching insects," Smith said.

Known as snap-buckling, the phenomenon is similar to the opening and closing of a snap hair clip, Smith said. "Or, remember those little pop-up toys that consist of a half sphere made of rubber? When you invert one and set it on a hard surface it will eventually snap back into place and jump off the surface," Smith added.

Snap-buckling has also been observed in plants and insects. "The classic example of snap-buckling in plants is the venus flytrap, which uses this trick to catch insects," Smith said. "Cicadas, too, have tiny ribs which they snap-buckle to produce their distinctive song."

This study marks the first time snap-buckling has been observed in vertebrates, the authors added.

The study will appear in the August 7 issue of Journal of Theoretical Biology, and is also available online at doi:10.1016/j.jtbi.2011.05.007.

CITATION: Smith, M., G. Yanega, and A. Ruina. (2011). "Elastic instability model of rapid beak closure in hummingbirds." Journal of Theoretical Biology 282: 41-51.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>