Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where have all the hummingbirds gone?

04.06.2012
Glacier lilies and broad-tailed hummingbirds out of sync

The glacier lily as it's called, is a tall, willowy plant that graces mountain meadows throughout western North America. It flowers early in spring, when the first bumblebees and hummingbirds appear.


Glacier lilies flower within days of snowmelt and are an important nectar resource. Credit: David Inouye


This is a male broad-tailed hummingbird, with the yellow pollen on its bill likely from a glacier lily. Credit: David Inouye

Or did.

The lily, a plant that grows best on subalpine slopes, is fast becoming a hothouse flower. In Earth's warming temperatures, its first blooms appear some 17 days earlier than they did in the 1970s, scientists David Inouye and Amy McKinney of the University of Maryland and colleagues have found.

The problem, say the biologists, with the earlier timing of these first blooms is that the glacier lily is no longer synchronized with the arrival of broad-tailed hummingbirds, which depend on glacier lilies for nectar.

By the time the hummingbirds fly in, many of the flowers have withered away, their nectar-laden blooms going with them.

Broad-tailed hummingbirds migrate north from Central America every spring to high-mountain breeding sites in the western United States. The birds have only a short mountain summer to raise their young. Male hummingbirds scout for territories before the first flowers bloom.

But the time between the first hummingbird and the first bloom has collapsed by 13 days over the past four decades, say Inouye and McKinney. "In some years," says McKinney, "the lilies have already bloomed by the time the first hummingbird lands."

The biologists calculate that if current trends continue, in two decades the hummingbirds will miss the first flowers entirely.

The results are reported in a paper in the current issue of the journal Ecology. In addition to McKinney and Inouye, co-authors of the paper are Paul CaraDonna of the University of Arizona; Billy Barr of the Rocky Mountain Biological Laboratory in Crested Butte, Colo.; David Bertelsen of the University of Arizona; and Nickolas Waser, affiliated with all three institutions.

"Northern species, such as the broad-tailed hummingbird, are most at risk of arriving at their breeding sites after their key food resources are no longer available, yet ecologists predict that species will move northward as climate warms," says Saran Twombly, program director in the National Science Foundation's Division of Environmental Biology, which funded the research.

"These conflicting pressures challenge society to ensure that species don't soon find themselves without a suitable place to live."

Broad-tailed hummingbirds that breed farther south have fewer challenges.

"In Arizona, for example," says Inouye, "there's no obvious narrowing of the timing between the first arriving males and the first blooms of, in this case, the nectar-containing Indian paintbrush."

Higher latitudes may be more likely to get out of sync ecologically because global warming is happening fastest there.

As the snow continues to melt earlier in the spring, bringing earlier flowering, says Inouye, the mountains may come alive with glacier lilies long before hummingbirds can complete their journey north.

"Where have all the flowers gone?" then will be "where have all the hummingbirds gone?"

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>