Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where have all the hummingbirds gone?

04.06.2012
Glacier lilies and broad-tailed hummingbirds out of sync

The glacier lily as it's called, is a tall, willowy plant that graces mountain meadows throughout western North America. It flowers early in spring, when the first bumblebees and hummingbirds appear.


Glacier lilies flower within days of snowmelt and are an important nectar resource. Credit: David Inouye


This is a male broad-tailed hummingbird, with the yellow pollen on its bill likely from a glacier lily. Credit: David Inouye

Or did.

The lily, a plant that grows best on subalpine slopes, is fast becoming a hothouse flower. In Earth's warming temperatures, its first blooms appear some 17 days earlier than they did in the 1970s, scientists David Inouye and Amy McKinney of the University of Maryland and colleagues have found.

The problem, say the biologists, with the earlier timing of these first blooms is that the glacier lily is no longer synchronized with the arrival of broad-tailed hummingbirds, which depend on glacier lilies for nectar.

By the time the hummingbirds fly in, many of the flowers have withered away, their nectar-laden blooms going with them.

Broad-tailed hummingbirds migrate north from Central America every spring to high-mountain breeding sites in the western United States. The birds have only a short mountain summer to raise their young. Male hummingbirds scout for territories before the first flowers bloom.

But the time between the first hummingbird and the first bloom has collapsed by 13 days over the past four decades, say Inouye and McKinney. "In some years," says McKinney, "the lilies have already bloomed by the time the first hummingbird lands."

The biologists calculate that if current trends continue, in two decades the hummingbirds will miss the first flowers entirely.

The results are reported in a paper in the current issue of the journal Ecology. In addition to McKinney and Inouye, co-authors of the paper are Paul CaraDonna of the University of Arizona; Billy Barr of the Rocky Mountain Biological Laboratory in Crested Butte, Colo.; David Bertelsen of the University of Arizona; and Nickolas Waser, affiliated with all three institutions.

"Northern species, such as the broad-tailed hummingbird, are most at risk of arriving at their breeding sites after their key food resources are no longer available, yet ecologists predict that species will move northward as climate warms," says Saran Twombly, program director in the National Science Foundation's Division of Environmental Biology, which funded the research.

"These conflicting pressures challenge society to ensure that species don't soon find themselves without a suitable place to live."

Broad-tailed hummingbirds that breed farther south have fewer challenges.

"In Arizona, for example," says Inouye, "there's no obvious narrowing of the timing between the first arriving males and the first blooms of, in this case, the nectar-containing Indian paintbrush."

Higher latitudes may be more likely to get out of sync ecologically because global warming is happening fastest there.

As the snow continues to melt earlier in the spring, bringing earlier flowering, says Inouye, the mountains may come alive with glacier lilies long before hummingbirds can complete their journey north.

"Where have all the flowers gone?" then will be "where have all the hummingbirds gone?"

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>